Data-driven Models of Cell Communication in Embryos
胚胎细胞通讯的数据驱动模型
基本信息
- 批准号:1516970
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the complex set of signals that control communication between cells in a multicellular organism is a challenging problem that requires a diverse set of tools to solve. This project will use methods from developmental biology, applied mathematics and computer science to uncover the complex signaling patterns that regulate tissue formation in the developing fruit fly (Drosophila) embryo. The quantitative, computational and visualization tools to be developed in this study will be applicable to a broad range of signaling mechanisms in complex three-dimensional tissues or organisms, thereby providing methods of general applicability in biology. In addition, this project will provide interdisciplinary training for students from chemical and biological engineering, molecular biology, and computer science departments, as well as for postdoctoral fellows with applied mathematics and life sciences backgrounds. Alterations in the activation of receptor tyrosine kinases (RTKs) have been implicated in multiple developmental abnormalities, motivating quantitative studies of developmental RTK signaling. Signaling systems involved in embryogenesis have been highly conserved in evolution, which implies that studies in model organisms, such as Drosophila, yield broadly applicable insights. The early Drosophila embryo provides unique opportunities for high-throughput quantitative experiments, and this project will focus on signaling by the Epidermal Growth Factor Receptor (EGFR), a key regulator of developing tissues in many species. EGFR signaling in the early embryo is accurately described as a temporal pulse that leads to a stable pattern of gene expression, and this project will examine the molecular mechanisms controlling the quantitative parameters of this pulse and its function, as well as establishing experimentally testable models of EGFR signaling in vivo. This project will also develop methods to combine information from different experimental assays that address different aspects of developmental dynamics in different embryos to generate a stereotypical developmental trajectory.This award is funded jointly by the Systems and Synthetic Biology Program in the Division of Molecular and Cellular Biosciences and the Biomedical Engineering Program in the Division of Chemical, Bioengineering, Environmental and Transport Systems.
了解控制多细胞生物体中细胞之间通信的复杂信号集是一个具有挑战性的问题,需要一套不同的工具来解决。该项目将使用发育生物学,应用数学和计算机科学的方法来揭示调节发育中果蝇(果蝇)胚胎组织形成的复杂信号模式。本研究中开发的定量、计算和可视化工具将适用于复杂三维组织或生物体中广泛的信号传导机制,从而提供生物学中普遍适用的方法。此外,该项目将为来自化学和生物工程、分子生物学和计算机科学系的学生以及具有应用数学和生命科学背景的博士后研究员提供跨学科培训。受体酪氨酸激酶(RTK)激活的改变与多种发育异常有关,这激发了对发育RTK信号传导的定量研究。参与胚胎发生的信号系统在进化中高度保守,这意味着在模式生物(如果蝇)中的研究产生了广泛适用的见解。早期果蝇胚胎为高通量定量实验提供了独特的机会,该项目将重点关注表皮生长因子受体(EGFR)的信号传导,EGFR是许多物种中发育组织的关键调节因子。早期胚胎中的EGFR信号被准确地描述为导致基因表达稳定模式的时间脉冲,该项目将研究控制该脉冲及其功能的定量参数的分子机制,以及建立体内EGFR信号的实验可测试模型。该项目还将开发方法,以结合联合收割机的信息,从不同的实验分析,解决不同方面的发育动力学在不同的胚胎,以产生一个定型的发育轨迹。该奖项是由系统和合成生物学计划在分子和细胞生物科学和生物医学工程计划在化学,生物工程,环境和运输系统的司联合资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanislav Shvartsman其他文献
Altered protein dynamics and transition kinetics delineate the oncogenic potential in mutated kinases
- DOI:
10.1016/j.bpj.2021.11.1146 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Keshav Patil;Stanislav Shvartsman;Ravi Radhakrishnan - 通讯作者:
Ravi Radhakrishnan
Signaling Gradients in Embryos'
- DOI:
10.1016/j.bpj.2010.12.1154 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Stanislav Shvartsman - 通讯作者:
Stanislav Shvartsman
Stanislav Shvartsman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanislav Shvartsman', 18)}}的其他基金
Collaborative Research: Dynamics of Morphogen Gradients
合作研究:形态发生梯度动力学
- 批准号:
1119714 - 财政年份:2011
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
EFRI-MIKS: Multiscale Analysis of Morphogen Gradients
EFRI-MIKS:形态发生梯度的多尺度分析
- 批准号:
1136913 - 财政年份:2011
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of spatiotemporal signal processing in developmental patterning
合作研究:发育模式中的时空信号处理分析
- 批准号:
0718604 - 财政年份:2007
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Quantitative Analysis of Morphogen Gradients in Developing Tissues
职业:发育组织中形态发生梯度的定量分析
- 批准号:
0448919 - 财政年份:2005
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling and Computational Analysis of Cell Communication in Drosophila Ogenesis
合作研究:果蝇发育中细胞通讯的建模和计算分析
- 批准号:
0211755 - 财政年份:2002
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SaTC: CORE: Medium: Analytic versus Data Driven Models in Steganography: Empowering Each Other
SaTC:核心:中:隐写术中的分析模型与数据驱动模型:相互赋能
- 批准号:
2324991 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
- 批准号:
2327836 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Revealing mechanisms of specificity and adaptability in molecular information processing through data-driven models
通过数据驱动模型揭示分子信息处理的特异性和适应性机制
- 批准号:
10715575 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Predicting flood-induced flow and sediment dynamics using data-driven physics-informed models
使用数据驱动的物理模型预测洪水引起的流量和沉积物动力学
- 批准号:
2233986 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant














{{item.name}}会员




