Multistationarity and Oscillations in Biochemical Reaction Networks

生化反应网络中的多重平稳性和振荡

基本信息

项目摘要

This project focuses on two of the most important behaviors in biological dynamics, playing key roles at all scales, from molecular to cellular, to tissues and organisms. Multistationarity refers to the capacity of a system to operate at alternative steady-states, and is observed experimentally as irreversible switch-like behavior; oscillatons are periodic variations in the concentration of interacting elements (genes, metabolites, enzymes, etc). The interplay of multistationary and oscillatory behavior underlies crucial physiological processes: cellular division, differentiation and apoptosis, cellular signaling, enzyme regulation, circadian rhythms, and membrane potential activity in neurons and heart cells are only a few examples. Many diseases involve disturbances of these processes as a result of deregulation of multistationary and oscillatory behaviors in specific gene networks or biological pathways. A better understanding of the two behaviors may lead to developments in the study of such diseases. In this project, the investigator will create mathematical tools and software that will allow biochemical and biomedical scientists to analyze dynamical features of relevant biological systems. The emergence of multistationarity and oscillation is intimately linked to the existence of feedbacks and to other subtle features of the structure (i.e. wiring diagram) in the underlying reaction network of interacting elements. Design principles associated to multistationarity and oscillations have long been proposed and refined over the years, but there is not yet a complete picture of the relationship between structure on one hand and multistationary or oscillatory behavior on the other. In this project, the investigator develops new mathematical theory and expand existing results to strengthen our understanding of this connection. In particular, algorithms will be developed to identify key structural properties of biochemical reaction networks that give rise to multistationarity and oscillation. These developments will be implemented in user friendly, open source software, to assist and complement theoretical and experimental work in biochemical and biomedical fields. For example, in a joint effort with experimental collaborators, the investigator will analyze the ERBB network of receptor tyrosine kinases whose multistable behavior is involved in early events in cancer onset. This work also opens up exciting possibilities in bioengineering for the design of reaction networks with prescribed properties, relevant to research in cellular differentiation and with applications to tissue engineering and drug development.
该项目关注生物动力学中最重要的两种行为,从分子到细胞,再到组织和有机体,在所有尺度上都发挥着关键作用。多稳态是指系统在交替的稳态下运行的能力,在实验上被观察到是不可逆的开关行为;振荡是相互作用元素(基因、代谢产物、酶等)浓度的周期性变化。多稳态和振荡行为的相互作用是重要的生理过程的基础:细胞分裂、分化和凋亡、细胞信号、酶调节、昼夜节律和神经元和心脏细胞的膜电位活动只是其中的几个例子。许多疾病涉及这些过程的干扰,这是由于特定基因网络或生物途径中的多稳态和振荡行为的放松管制造成的。对这两种行为的更好理解可能会导致此类疾病研究的发展。在这个项目中,研究人员将创建数学工具和软件,使生化和生物医学科学家能够分析相关生物系统的动力学特征。多平稳性和振荡的出现与反馈的存在和相互作用元素的基本反应网络中结构的其他微妙特征(即接线图)密切相关。多年来,与多平稳和振荡相关的设计原则早已被提出和完善,但对于结构与多平稳或振荡行为之间的关系,目前还没有一个完整的图景。在这个项目中,研究人员开发了新的数学理论,并扩展了现有的结果,以加强我们对这种联系的理解。特别是,将开发算法来识别导致多平稳和振荡的生化反应网络的关键结构属性。这些开发将在用户友好的开源软件中实施,以协助和补充生化和生物医学领域的理论和实验工作。例如,在与实验合作者的共同努力下,研究人员将分析受体酪氨酸激酶的ERBB网络,其多稳定行为与癌症发病的早期事件有关。这项工作还为生物工程中设计具有特定性质的反应网络开辟了令人兴奋的可能性,与细胞分化研究以及组织工程和药物开发的应用相关。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some Results on Injectivity and Multistationarity in Chemical Reaction Networks
化学反应网络中单射性和多重平稳性的一些结果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casian Pantea其他文献

Chapter 3 Graph-Theoretic Analysis of Multistability and Monotonicity for Biochemical Reaction Networks
第3章生化反应网络多稳定性和单调性的图论分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Craciun;Casian Pantea;Eduardo Sontag
  • 通讯作者:
    Eduardo Sontag
Chemical reaction-diffusion networks: convergence of the method of lines
化学反应扩散网络:线法的收敛
Combinatorial approaches to Hopf bifurcations in systems of interacting elements
相互作用元素系统中 Hopf 分岔的组合方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Angeli;M. Banaji;Casian Pantea
  • 通讯作者:
    Casian Pantea
A computational approach to persistence, permanence, and endotacticity of biochemical reaction systems
生化反应系统的持久性、持久性和内规性的计算方法
  • DOI:
    10.1007/s00285-015-0892-1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    M. Johnston;Casian Pantea;P. Donnell
  • 通讯作者:
    P. Donnell
A ug 2 01 3 COMBINATORIAL APPROACHES TO HOPF BIFURCATIONS IN SYSTEMS IN INTERACTING ELEMENTS
A ug 2 01 3 相互作用元素系统中 HOPF 分岔的组合方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Angeli;M. Banaji;Casian Pantea
  • 通讯作者:
    Casian Pantea

Casian Pantea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Neutrino oscillations with NOvA and DUNE
NOvA 和 DUNE 的中微子振荡
  • 批准号:
    2907985
  • 财政年份:
    2024
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Studentship
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
  • 批准号:
    2349981
  • 财政年份:
    2024
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
  • 批准号:
    ST/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Research Grant
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
  • 批准号:
    23K17736
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
  • 批准号:
    10731224
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
Brain Mechanisms Underlying Changes in Neural Oscillations through Adolescent Cognitive Maturation
青少年认知成熟导致神经振荡变化的大脑机制
  • 批准号:
    10675169
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
Long Baseline Neutrino Oscillations with DUNE and T2K
DUNE 和 T2K 的长基线中微子振荡
  • 批准号:
    2888836
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Studentship
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Cooperative Agreement
Long-term correlation between Earth's background free oscillations and ocean gravity waves
地球背景自由振荡与海洋重力波之间的长期相关性
  • 批准号:
    23K03550
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alpha oscillations and working memory deficits in ADHD: A multimodal imaging investigation
ADHD 中的阿尔法振荡和工作记忆缺陷:多模态成像研究
  • 批准号:
    10808640
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了