Collaborative Research: Numerical Simulation of the Morphosynthesis of Polycrystalline Biominerals
合作研究:多晶生物矿物形态合成的数值模拟
基本信息
- 批准号:1520862
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polycrystalline biominerals are thermodynamically stable crystal polymorphs of biogenic minerals featuring stacked layers of crystals with mineral bridges between adjacent layers. The unique crystal texture gives rise to specific material properties such as toughness, corrosion resistance, and temperature resistance, which makes these crystals highly attractive for optical nanostructures (photonic band gaps, diffraction gratings) and for special coatings (e.g., in semiconductor device technology). Therefore, many material scientists are currently trying to realize the synthesis of such biominerals. The aim of this project is to provide both a mathematical model for the crystallization process and algorithmic tools for numerical simulations in order to understand the mechanisms of the process, to enable the experimentalists to optimize their laboratory settings, and thus to pave the way for an industrially relevant production line.The morphosynthesis of polycrystalline biominerals follows a multistage crystallization process including a polymer-induced liquid-precursor (PILP) phase, the occurrence of spherulites due to nucleation, and the recrystallization of mosaic mesocrystal thin structures. The PILP phase consists of an aqueous solution of the biomineral and an anionic polymer mixed with ethanol and features a liquid-liquid phase separation in terms of polymer-rich PILP droplets in the liquid mixture. The mixing is taken care of by a surface acoustic waves (SAWs) manipulated fluid flow where the SAWs are generated by two tapered interdigital transducers operating in dual mode. The polycrystallization sets in with the formation of spherulites that spread across the substrate to form a uniform spherulitic thin film. Continuous cooling leads to a recrystallization of the spherulitic thin film into a mosaic polycrystalline thin structure. The liquid-liquid phase separation characterizing the PILP phase can be described by a coupled system consisting of the incompressible Navier-Stokes equations and a Cahn-Hilliard equation. For the numerical simulation, the project will use a splitting scheme based on an implicit discretization in time and C0 Interior Penalty Discontinuous Galerkin (C0-IPDG) methods for discretization in space with respect to simplicial triangulations of the computational domain. The research will study the convergence of the splitting method and realize space-time adaptivity by the goal oriented dual weighted approach. As a mathematical model for the polycrystallization the project investigates a phase field model consisting of the dynamic equations for the measure of local crystallinity, the concentration field for the biomineral, the orientation field, and a heat equation for the evolution of the temperature during the cooling process. The equation for the concentration field is a fourth order Cahn-Hilliard type equation. Again, discretizing implicitly in time and by C0-IPDG methods in space, the project will use a splitting method and dual weighted residuals for space-time adaptivity featuring a desired crystallinity at final time as the objective functional. A model validation will be based on experimental data provided by cooperating laboratories and a systematic parameter study will be performed to investigate the influence of various process parameters.
多晶生物矿物是生物矿物的结晶稳定的晶体多晶型物,其特征在于晶体的堆叠层与相邻层之间的矿物桥。独特的晶体织构产生了特定的材料性质,例如韧性、耐腐蚀性和耐温性,这使得这些晶体对于光学纳米结构(光子带隙、衍射光栅)和特殊涂层(例如,在半导体器件技术中)。因此,目前许多材料科学家都在试图实现这类生物矿物的合成。该项目的目的是提供结晶过程的数学模型和数值模拟的算法工具,以了解该过程的机制,使实验人员能够优化他们的实验室设置,多晶生物矿物的形态合成遵循多阶段结晶过程,包括聚合物诱导的液相结晶,前体(PILP)相、由于成核而发生球晶以及镶嵌介晶薄结构的再结晶。PILP相由生物矿物和与乙醇混合的阴离子聚合物的水溶液组成,并且以液体混合物中富含聚合物的PILP液滴的液-液相分离为特征。混合是照顾由表面声波(SAW)操纵的流体流,其中SAW是由两个锥形叉指换能器在双模式下操作产生的。多晶化开始形成球晶,球晶在基材上扩散,形成均匀的球晶薄膜。连续冷却导致球晶薄膜再结晶成镶嵌多晶薄结构。描述PILP相的液-液相分离可以用不可压Navier-Stokes方程和Cahn-Hilliard方程组成的耦合系统来描述。对于数值模拟,该项目将使用基于时间上隐式离散化的分裂方案和用于空间上离散化的C 0内部惩罚间断伽辽金(C 0-IPDG)方法,相对于计算域的单纯三角剖分。研究了分裂方法的收敛性,并采用面向目标的对偶加权方法实现了分裂方法的时空适应性。作为多晶化的数学模型,该项目研究了相场模型,该模型由测量局部结晶度的动力学方程、生物矿物的浓度场、取向场和冷却过程中温度演变的热方程组成。浓度场方程是一个四阶Cahn-Hilliard型方程。同样,在时间上隐式离散化,在空间上通过C 0-IPDG方法,该项目将使用分裂方法和双加权残差进行时空自适应,其特征在于在最终时间作为目标函数的所需结晶度。模型验证将基于合作实验室提供的实验数据,并将进行系统的参数研究,以调查各种工艺参数的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Sharma其他文献
Influence of organic and synthetic fertilizers on soil physical properties.
有机肥和合成肥料对土壤物理性质的影响。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. S. Malik;R. Chauhan;J. Laura;Tanvi Kapoor;Raashee Abhilashi;Natasha Sharma - 通讯作者:
Natasha Sharma
The Impact of Next-generation Sequencing on Interobserver Agreement and Diagnostic Accuracy of Desmoplastic Melanocytic Neoplasms
下一代测序对促纤维增生性黑素细胞肿瘤观察者间一致性和诊断准确性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Alice Chen;Natasha Sharma;Pragi Patel;Shantel Olivares;Armita Bahrami;Raymond L Barnhill;W. Blokx;M. Bosenberg;K. Busam;A. de la Fouchardière;Lyn M. Duncan;David E Elder;Jennifer S Ko;Gilles Landman;Alexander J Lazar;Cecilia Lezcano;L. Lowe;Nigel G. Maher;D. Massi;Jane L Messina;D. Mihic;Douglas C Parker;M. Redpath;R. Scolyer;Christopher R Shea;Alan Spatz;Victor A. Tron;Xiaowei Xu;I. Yeh;Sook Jung Yun;Artur Zembowicz;P. Gerami - 通讯作者:
P. Gerami
Robust a-posteriori error estimates for weak Galerkin method for the convection-diffusion problem
- DOI:
10.1016/j.apnum.2021.08.007 - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Natasha Sharma - 通讯作者:
Natasha Sharma
Utilization Pattern, Population Density and Supply Chain of Rhododendron arboreum and Rhododendron campanulatum in the Dhauladhar Mountain Range of Himachal Pradesh, India
印度喜马偕尔邦道拉达尔山脉树杜鹃和风铃杜鹃利用模式、种群密度及供应链
- DOI:
10.12691/aees-4-4-4 - 发表时间:
2016 - 期刊:
- 影响因子:4.9
- 作者:
Natasha Sharma;C. Kala - 通讯作者:
C. Kala
BRAF Mutated and Morphologically Spitzoid Tumors, a Subgroup of Melanocytic Neoplasms Difficult to Distinguish From True Spitz Neoplasms
BRAF 突变和形态学上的 Spitz 样肿瘤是黑素细胞肿瘤的一个亚组,很难与真正的 Spitz 肿瘤区分开来
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
P. Gerami;Alice Chen;Natasha Sharma;Pragi Patel;Michael Hagstrom;Pranav Kancherla;Tara Geraminejad;Shantel Olivares;Asok Biswas;M. Bosenberg;K. Busam;A. de la Fouchardière;Lyn M. Duncan;David E Elder;Jennifer S Ko;Gilles Landman;Alexander J Lazar;L. Lowe;D. Massi;D. Mihic;Douglas C Parker;R. Scolyer;Christopher R Shea;Artur Zembowicz;Sook Jung Yun;W. Blokx;Raymond L Barnhill - 通讯作者:
Raymond L Barnhill
Natasha Sharma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasha Sharma', 18)}}的其他基金
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110774 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant