Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
基本信息
- 批准号:2110774
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use computational mathematics models to further the understanding of two applications, microemulsions systems and crystal formation models. The first class of applications has relevance for oil-water-surfactant systems, which are important in oil recovery, development of environmentally friendly solvents, consumer and commercial cleaning product formulations, and drug delivery systems. The crystal models to be studied will be useful in detecting topological defects within crystalline materials, a task which is of great interest in the material science community. Specific examples include supercooled liquids, crack propagation in a ductile material, and applications relating to photonics and semiconductors, cell structure substrates and MRI contrast agents. A major challenge impeding their use by the general mathematical and scientific community has been a lack of understanding of these complex systems. This project will build efficient algorithms for simulation that will support the study of these processes and the design of advanced materials. The project will provide opportunities to undergraduate and graduate students and introduce them to the theory and implementation of state-of-the-art numerical methods. In this project the PIs will develop C0 interior penalty finite element methods for the two classes of applications and mathematical models. The C0 interior penalty finite element method was originally constructed to handle fourth-order elliptic problems arising in mechanics, but its adaptations have been applied to other fourth- and sixth-order partial differential equations. The focus of this project is on numerical methods for time-dependent sixth-order partial differential equations. The high derivative order in combination with a time-dependent component presents many challenges to the creation of stable, convergent, and efficient numerical methods approximating solutions to these models. The work to be accomplished includes the establishment of formal proofs for the unique solvability, stability, and convergence of the proposed numerical methods. The largest challenge will be to develop a framework which establishes optimal order error estimates. Finally, in order to improve upon the efficiency of the proposed numerical methods, the PIs plan to develop efficient solvers for space-time discretized systems using operator-splitting techniques and space-time adaptivity based on a posteriori error estimates obtained by the goal-oriented dual weighted approach.This project is jointly funded by Computational Mathematics program, and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画将使用计算数学模型来进一步了解微乳系统与晶体形成模型的两个应用。第一类应用与油-水-表面活性剂体系有关,这在石油回收、环境友好溶剂的开发、消费者和商业清洁产品配方以及药物递送体系中是重要的。待研究的晶体模型将有助于检测晶体材料中的拓扑缺陷,这是材料科学界非常感兴趣的任务。具体的例子包括过冷液体、韧性材料中的裂纹扩展以及与光子学和半导体、细胞结构基底和MRI造影剂相关的应用。阻碍一般数学和科学界使用它们的一个主要挑战是缺乏对这些复杂系统的理解。该项目将建立有效的模拟算法,以支持这些过程的研究和先进材料的设计。该项目将为本科生和研究生提供机会,并向他们介绍最先进的数值方法的理论和实施。在这个项目中,PI将为两类应用程序和数学模型开发C 0内部惩罚有限元方法。C 0内部罚有限元法最初是为了处理力学中的四阶椭圆问题而构造的,但其适应性已被应用于其他四阶和六阶偏微分方程。这个项目的重点是时间相关的六阶偏微分方程的数值方法。高导数阶与时间相关的组件相结合,提出了许多挑战,以创建稳定,收敛和有效的数值方法逼近这些模型的解决方案。要完成的工作包括建立正式证明的唯一的可解性,稳定性和收敛性的数值方法。最大的挑战将是开发一个框架,建立最佳阶误差估计。最后,为了提高数值方法的效率,研究人员计划利用算子分裂技术和基于目标导向的对偶加权方法获得的后验误差估计的时空自适应性来开发时空离散系统的有效求解器。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Sharma其他文献
Influence of organic and synthetic fertilizers on soil physical properties.
有机肥和合成肥料对土壤物理性质的影响。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. S. Malik;R. Chauhan;J. Laura;Tanvi Kapoor;Raashee Abhilashi;Natasha Sharma - 通讯作者:
Natasha Sharma
The Impact of Next-generation Sequencing on Interobserver Agreement and Diagnostic Accuracy of Desmoplastic Melanocytic Neoplasms
下一代测序对促纤维增生性黑素细胞肿瘤观察者间一致性和诊断准确性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Alice Chen;Natasha Sharma;Pragi Patel;Shantel Olivares;Armita Bahrami;Raymond L Barnhill;W. Blokx;M. Bosenberg;K. Busam;A. de la Fouchardière;Lyn M. Duncan;David E Elder;Jennifer S Ko;Gilles Landman;Alexander J Lazar;Cecilia Lezcano;L. Lowe;Nigel G. Maher;D. Massi;Jane L Messina;D. Mihic;Douglas C Parker;M. Redpath;R. Scolyer;Christopher R Shea;Alan Spatz;Victor A. Tron;Xiaowei Xu;I. Yeh;Sook Jung Yun;Artur Zembowicz;P. Gerami - 通讯作者:
P. Gerami
Robust a-posteriori error estimates for weak Galerkin method for the convection-diffusion problem
- DOI:
10.1016/j.apnum.2021.08.007 - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Natasha Sharma - 通讯作者:
Natasha Sharma
Utilization Pattern, Population Density and Supply Chain of Rhododendron arboreum and Rhododendron campanulatum in the Dhauladhar Mountain Range of Himachal Pradesh, India
印度喜马偕尔邦道拉达尔山脉树杜鹃和风铃杜鹃利用模式、种群密度及供应链
- DOI:
10.12691/aees-4-4-4 - 发表时间:
2016 - 期刊:
- 影响因子:4.9
- 作者:
Natasha Sharma;C. Kala - 通讯作者:
C. Kala
BRAF Mutated and Morphologically Spitzoid Tumors, a Subgroup of Melanocytic Neoplasms Difficult to Distinguish From True Spitz Neoplasms
BRAF 突变和形态学上的 Spitz 样肿瘤是黑素细胞肿瘤的一个亚组,很难与真正的 Spitz 肿瘤区分开来
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
P. Gerami;Alice Chen;Natasha Sharma;Pragi Patel;Michael Hagstrom;Pranav Kancherla;Tara Geraminejad;Shantel Olivares;Asok Biswas;M. Bosenberg;K. Busam;A. de la Fouchardière;Lyn M. Duncan;David E Elder;Jennifer S Ko;Gilles Landman;Alexander J Lazar;L. Lowe;D. Massi;D. Mihic;Douglas C Parker;R. Scolyer;Christopher R Shea;Artur Zembowicz;Sook Jung Yun;W. Blokx;Raymond L Barnhill - 通讯作者:
Raymond L Barnhill
Natasha Sharma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasha Sharma', 18)}}的其他基金
Collaborative Research: Numerical Simulation of the Morphosynthesis of Polycrystalline Biominerals
合作研究:多晶生物矿物形态合成的数值模拟
- 批准号:
1520862 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244695 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant