Engineering Photonic Quantum States for Quantum Information
量子信息的工程光子量子态
基本信息
- 批准号:1521110
- 负责人:
- 金额:$ 39.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A single particle of light, or a photon, can be correlated with another photon such that measuring the properties of one instantaneously affects the properties of the other even if they are not in the same location. Such correlations make photons useful for creating new technologies that allow for faster and more powerful computing and completely secure communication as well as for testing fundamental physical theories. Yet creating photons with just the right correlations for such applications remains challenging. This research project addresses these difficulties by creating and demonstrating new techniques for measuring and controlling single photons and the matter with which they interact. By adjusting the energy source and medium in which photons are created, photons are created whose correlations are close to ideal for new technologies and fundamental tests of physics principles. It has been shown that single photons with properties suitable for secure long-distance communication can be stored in a memory made of a gas of atoms that preserves their correlations. In this project the interaction of light with the environment itself, such as how light is absorbed and transferred between different forms of energy in molecules, will be studied. The correlations of single photons will be used to gain more insight into how such processes occur. Extending the ability to control the properties of single photons and their interactions with matter has implications for creating new types of computing based on the laws of quantum mechanics that can solve otherwise prohibitive mathematical problems and simulate complex physical systems. It also enables methods of sending information completely securely, with clear indications of any eavesdropping, and improves the ability to test the theory of quantum mechanics. Understanding light-matter interaction in molecules supports the creation of new drugs and improvement of technologies that use such molecules. This research project also provides students training in quantum optics and atomic and molecular physics and informs the public about quantum technologies through demonstrations, museum exhibits and public lectures.This research project extends our understanding and ability to control the spatial and spectral-temporal properties of quantum states and their correlations. Quantum applications that utilize photonic quantum states often have specific requirements for the photons' spatial and spectral-temporal properties and correlations in order to perform protocols. Through this work new techniques will be developed and applied to measure with unprecedented speed and resolution the joint correlations of photonic quantum states produced via spontaneous four-wave mixing. The spectral tunability of photon-pairs created in artificially structured materials will be explored using a new scheme based on dual-pump spontaneous four-wave mixing. Photonic quantum states will be engineered using self- and cross-phase modulation and by tuning the group velocity difference between two distinct pumps, to create photon pairs that are completely uncorrelated (except for the existence of one indicating the other).Quantum memories, are critical components for quantum information processing applications. High-bandwidth storage and retrieval of telecom-wavelength photons using an off-resonant Raman protocol in atomic barium vapor will be demonstrated. The inherent correlations of the atomic system will be utilized to generate pure photons useful for quantum applications relying on high-visibility two-photon interference and demonstrate entanglement of atomic ensembles. Quantum information research has resulted in techniques to measure the spatial, spectral and temporal correlations of photonic quantum states. These techniques will be extended and applied to better understand and control the materials with which the photons interact. New spectroscopies based on single-photon level interference and coincidence detection will be used to gain unique insight into the coherence and population dynamics of molecular liquids, including the intricate redistribution of energy among vibrational states.By extending the understanding and ability to control ultrafast photonic quantum states and their interactions with material systems, the research contributes significantly to the goals of quantum information research in the areas of quantum communication, quantum computation, and fundamental tests of quantum mechanics. The new techniques demonstrated for quantum control in the spectral, temporal and spatial domains of photonic, atomic and molecular quantum states have the potential to open up exciting new avenues of research and technology development. The research is integrated with outreach components to inform the public and K-12 students about the amazing properties of single photons. The PI prepares interactive demonstrations of the applications of single photons in quantum communication for display in the University of Illinois physics building, and for presentation at public outreach lectures, engineering open houses, and for exhibit in a local children's museum. The research provides professional training to graduate students in quantum optics and atomic and molecular physics.
光的单个粒子或光子可以与另一个光子相关联,使得测量一个光子的性质会立即影响另一个光子的性质,即使它们不在同一位置。这种相关性使得光子可以用于创造新技术,从而实现更快,更强大的计算和完全安全的通信,以及测试基本物理理论。然而,为这些应用创造具有正确相关性的光子仍然具有挑战性。该研究项目通过创建和演示用于测量和控制单光子及其相互作用的物质的新技术来解决这些困难。通过调整产生光子的能量源和介质,产生的光子的相关性接近于新技术和物理原理基本测试的理想状态。已经证明,具有适合安全长距离通信的特性的单光子可以存储在由原子气体制成的存储器中,该存储器保持它们的相关性。在这个项目中,将研究光与环境本身的相互作用,例如光如何被吸收和在分子中不同形式的能量之间转移。单光子的相关性将被用来更深入地了解这些过程是如何发生的。扩展控制单光子特性及其与物质相互作用的能力,对于创建基于量子力学定律的新型计算具有重要意义,这些计算可以解决其他禁止的数学问题并模拟复杂的物理系统。它还使发送信息的方法完全安全,有任何窃听的明确迹象,并提高了测试量子力学理论的能力。了解分子中的光-物质相互作用有助于创造新药和改进使用此类分子的技术。该研究项目还为学生提供量子光学和原子分子物理学方面的培训,并通过演示,博物馆展览和公开讲座向公众介绍量子技术。该研究项目扩展了我们对量子态及其相关性的空间和光谱-时间特性的理解和控制能力。利用光子量子态的量子应用通常对光子的空间和光谱-时间特性和相关性具有特定要求,以便执行协议。通过这项工作,新的技术将被开发和应用,以前所未有的速度和分辨率测量通过自发四波混频产生的光子量子态的联合相关。利用基于双泵浦自发四波混频的新方案,将探索在人工结构材料中产生的光子对的光谱可调谐性。光子量子态将利用自相位调制和交叉相位调制,并通过调整两个不同泵浦之间的群速度差来设计,以创建完全不相关的光子对(除了一个指示另一个的存在)。量子存储器是量子信息处理应用的关键组件。高带宽的存储和检索的电信波长的光子使用非共振拉曼协议在原子钡蒸汽将被证明。原子系统的固有相关性将被用来产生可用于依赖于高可见度双光子干涉的量子应用的纯光子,并展示原子系综的纠缠。量子信息研究已经导致测量光子量子态的空间、光谱和时间相关性的技术。这些技术将被扩展和应用,以更好地理解和控制与光子相互作用的材料。基于单光子水平干涉和符合探测的新光谱学将用于获得对分子液体的相干性和布居动力学的独特见解,包括振动状态之间复杂的能量再分配。通过扩展对超快光子量子态及其与材料系统相互作用的理解和控制能力,对量子通信,量子计算和量子力学基础测试等领域的量子信息研究目标作出了重要贡献。在光子、原子和分子量子态的光谱、时间和空间域中进行量子控制的新技术有可能开辟令人兴奋的研究和技术发展的新途径。该研究与外展组件相结合,以告知公众和K-12学生有关单光子的惊人特性。PI准备了单光子在量子通信中的应用的交互式演示,用于在伊利诺伊大学物理大楼展示,并在公共宣传讲座,工程开放日和当地儿童博物馆展出。这项研究为量子光学和原子分子物理学的研究生提供了专业培训。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photon-matter quantum correlations in spontaneous Raman scattering
自发拉曼散射中的光子-物质量子相关性
- DOI:10.1103/physreva.101.013415
- 发表时间:2020
- 期刊:
- 影响因子:2.9
- 作者:Shinbrough, Kai;Teng, Yanting;Fang, Bin;Lorenz, Virginia O.;Cohen, Offir
- 通讯作者:Cohen, Offir
Dual-Pump Design Enables Novel Photon-Pair Characterization and Engineering
双泵设计实现新颖的光子对表征和工程
- DOI:10.1364/cleo_qels.2019.fth3d.4
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Zhang, Yujie;Spiniolas, Ryan;Shinbrough, Kai;Fang, Bin;Cohen, Offir;Lorenz, Virginia O.
- 通讯作者:Lorenz, Virginia O.
Raman Scattering Beyond the Master Equation: Photon-Matter Correlations and Statistics
超越主方程的拉曼散射:光子-物质相关性和统计
- DOI:10.1364/cleo_qels.2019.fm2a.6
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Shinbrough, Kai;Teng, Yanting;Fang, Bin;Lorenz, Virginia O.;Cohen, Offir
- 通讯作者:Cohen, Offir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Lorenz其他文献
Implantation failures and exposure to glyphosate or a commercial formulation: hormonal and uterine dysfunction during the pre-implantation period as possible mechanisms
- DOI:
10.1016/j.placenta.2019.06.246 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Guillermina Pacini;Virginia Lorenz;Dalma Belén Cadaviz Fernández;María Paula Gastiazoro;Enrique Hugo Luque;Jorgelina Varayoud;María Mercedes Milesi - 通讯作者:
María Mercedes Milesi
Correction to: Response to comments on: Perinatal exposure to a glyphosate-based herbicide impairs female reproductive outcomes and induces second-generation adverse effects in Wistar rats
- DOI:
10.1007/s00204-020-02814-2 - 发表时间:
2020-06-24 - 期刊:
- 影响因子:6.900
- 作者:
María M. Milesi;Virginia Lorenz;Pablo M. Beldomenico;Stella Vaira;Jorgelina Varayoud;Enrique H. Luque - 通讯作者:
Enrique H. Luque
Decreased birth weight due to life-long maternal cafeteria diet: is feto-placental development affected?
- DOI:
10.1016/j.placenta.2019.06.315 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
María Paula Gastiazoro;Virginia Lorenz;María Florencia Rossetti;Rocío Schumacher;Cora Stocker;Milena Durando;Enrique Hugo Luque;Jorge Guillermo Ramos;Jorgelina Varayoud - 通讯作者:
Jorgelina Varayoud
Effects of <em>in utero</em> and lactational exposure to glyphosate or its commercial formulation on pregnancy outcomes in rats
- DOI:
10.1016/j.placenta.2019.06.352 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Dalma Belén Cadaviz Fernández;Virginia Lorenz;Guillermina Pacini;María Paula Gastiazoro;Milena Durando;Enrique Hugo Luque;Jorgelina Varayoud;María Mercedes Milesi - 通讯作者:
María Mercedes Milesi
Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health
- DOI:
10.1007/s00109-022-02249-5 - 发表时间:
2022-09-02 - 期刊:
- 影响因子:4.200
- 作者:
Yohana Camila Garay;Romina Beatriz Cejas;Virginia Lorenz;Natacha Zlocowski;Pedro Parodi;Franco Alejandro Ferrero;Genaro Angeloni;Valentina Alfonso García;Victor German Sendra;Ricardo Dante Lardone;Fernando José Irazoqui - 通讯作者:
Fernando José Irazoqui
Virginia Lorenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Lorenz', 18)}}的其他基金
Generation, Control and Storage of Broadband Transverse-Mode-Entangled Photons
宽带横模纠缠光子的产生、控制和存储
- 批准号:
2207822 - 财政年份:2022
- 资助金额:
$ 39.61万 - 项目类别:
Continuing Grant
Novel Spontaneous Four-wave Mixing Techniques for Photon-pair Generation and Hyperentanglement
用于光子对生成和超纠缠的新型自发四波混合技术
- 批准号:
1806572 - 财政年份:2018
- 资助金额:
$ 39.61万 - 项目类别:
Standard Grant
Ultrashort Single Photon Generation via Conditional Excitation of an Atomic Barium Ensemble
通过原子钡系综的条件激发产生超短单光子
- 批准号:
1540513 - 财政年份:2015
- 资助金额:
$ 39.61万 - 项目类别:
Continuing Grant
Ultrashort Single Photon Generation via Conditional Excitation of an Atomic Barium Ensemble
通过原子钡系综的条件激发产生超短单光子
- 批准号:
1205812 - 财政年份:2012
- 资助金额:
$ 39.61万 - 项目类别:
Continuing Grant
相似海外基金
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Continuing Grant
Engineering Quantum Dots and Photonic Metamaterials for Ultrasensitive and Multiplexed Digital Resolution Biomolecule Detection
用于超灵敏和多重数字分辨率生物分子检测的工程量子点和光子超材料
- 批准号:
2232681 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Continuing Grant
Photonic Quantum Engineering Testbed
光子量子工程试验台
- 批准号:
460122111 - 财政年份:2021
- 资助金额:
$ 39.61万 - 项目类别:
Major Research Instrumentation
C: Photonic Engine to Accelerate Atomic Quantum Engineering (PEAQUE)
C:加速原子量子工程的光子引擎(PEAQUE)
- 批准号:
2134345 - 财政年份:2021
- 资助金额:
$ 39.61万 - 项目类别:
Cooperative Agreement
MsRI-EC: Conference on Midscale Infrastructure for Quantum Photonic Science, Engineering and Technology.The Conference Will Be Held Virtually In August, 2020.
MsRI-EC:量子光子科学、工程和技术中型基础设施会议。会议将于 2020 年 8 月以虚拟方式举行。
- 批准号:
2034958 - 财政年份:2020
- 资助金额:
$ 39.61万 - 项目类别:
Standard Grant
Nanoscale Engineering of Advanced Materials for Future Photonic and Quantum Devices
用于未来光子和量子器件的先进材料的纳米工程
- 批准号:
2314778 - 财政年份:2019
- 资助金额:
$ 39.61万 - 项目类别:
Studentship
Planning Grant: Engineering Research Center for Photonic Quantum Networks (PQN)
规划资助:光子量子网络工程研究中心(PQN)
- 批准号:
1840389 - 财政年份:2018
- 资助金额:
$ 39.61万 - 项目类别:
Standard Grant
Engineering Photonic Quantum Technologies
工程光子量子技术
- 批准号:
EP/L024020/1 - 财政年份:2014
- 资助金额:
$ 39.61万 - 项目类别:
Research Grant
Aperiodic Lattices for Photonic Engineering of Terahertz Quantum Cascade Lasers
用于太赫兹量子级联激光器光子工程的非周期晶格
- 批准号:
EP/G064504/1 - 财政年份:2009
- 资助金额:
$ 39.61万 - 项目类别:
Research Grant
Detectors and sources for photonic quantum engineering
用于光子量子工程的探测器和源
- 批准号:
LX0775983 - 财政年份:2007
- 资助金额:
$ 39.61万 - 项目类别:
Linkage - International














{{item.name}}会员




