Photon Temporal Modes as a Quantum Information Resource

作为量子信息资源的光子时间模式

基本信息

  • 批准号:
    1521466
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Quantum information science (QIS) promises means for storing, transmitting, and processing information in ways not achievable using conventional (classical-physics-based) information technology. Success in QIS could revolutionize both technology and science through new computation and communication capabilities. Major breakthroughs are still needed before these can become reality. It is generally recognized that the most powerful quantum computation will take place using material systems (atoms or electrons). In contrast, quantum communication across a network (a "Quantum Internet") will take place using light (photons). In addition, specialized quantum-information processing will take place using light or a combination of light and interacting atoms, as needed, for example, to construct signal repeaters for extending the range of quantum communication over longer distances. This project will develop a radical, yet practical, new approach to using photons to encode quantum information.Photons in a light beam have four distinct properties, any of which could be used to encode quantum-information: polarization (e.g., vertical or horizontal), two-dimensions of beam profile (spatial shape), and temporal shape (variation in time of brightness during a light pulse). In order to fully utilize light for transmitting information in a quantum network, it is necessary to be able to manipulate and sort a beam of light according to the states associated with each of these properties. While polarization and spatial beam profiles have been previously developed as means for encoding quantum information on photons, the temporal shape of photons has gone largely unrecognized as an important potential technique. The project endeavors to complete the "tool kit" for photon-based QIS by developing means to use photon temporal shape to encode information. This approach has predicted benefits in that 1) it allows more than one bit of information to be encoded on a single photon, 2) the encoding method is robust against the alterations of light that occur while traveling in a long optical fiber, and 3) the method nicely interfaces with atom-based quantum-light memories, which will be used in the future construction of a Quantum Internet. Controlling quantum systems is of broad interest in science and information technology, metrology, quantum chemistry, and nano-mechanics. Optical technology and quantum-optics-based information science offer excellent opportunities to integrate research with science education. To improve the quality of general science education for non-science majors, the P.I. cofounded in 2010 the Science Literacy Program (SLP) at the University of Oregon, and serves as its Co-Director. The SLP has provided mentored instructional opportunities to many graduate students and undergraduate science majors serving as co-instructors in science literacy courses. He developed and taught an SLP course, Quantum Physics for Everyone, which presented quantum information science to non-science majors, using active learning techniques to engage the students. He will continue serving as SLP Co-Director.From a more technical perspective, the project will develop the idea that in QIS, temporal modes (TMs) of photons, and more generally light fields, should be viewed on an equal footing with polarization and transverse modes. TMs are wave-packet modes that have the same carrier frequency, polarization, and transverse spatial mode, and occupy the same time bin, but yet are temporal orthogonal. To enable the development of TMs for use as qubits and qudits, the central needed technology is the quantum pulse gate (QPG), which will implement a near-100% efficient spatial sorting of field-orthogonal TMs. Based on their recently proposed method of temporal-mode interferometry (TMI), the researchers will demonstrate the elements of a complete quantum information framework that employs field orthogonality of single-photon temporal modes. The three requirements - generation of resource states, the targeted and efficient manipulation of TMs, and their detection and characterization - can be fulfilled with current technology. In particular, the researchers will study, experimentally and theoretically, means for implementing single-qubit quantum-logic operations (Pauli-X, -Y, and -Z gates; and phase-shift gate) using the quantum pulse gate device as the basic building block. They will also demonstrate that the QPG can act as a real-time controllable switch that is temporal-mode selective, by varying a phase shift internal to the device. In addition, they will demonstrate means for verifying the fidelity of such gate operations, using a new form of quantum-state tomography, which can determine the quantum state directly in a TM basis.
量子信息科学(QIS)承诺以传统(基于经典物理学的)信息技术无法实现的方式存储,传输和处理信息。QIS的成功可以通过新的计算和通信能力来彻底改变技术和科学。在实现这些目标之前,仍需取得重大突破。人们普遍认为,最强大的量子计算将使用材料系统(原子或电子)进行。相比之下,通过网络(“量子互联网”)的量子通信将使用光(光子)进行。此外,专门的量子信息处理将根据需要使用光或光与相互作用原子的组合来进行,例如,构建信号中继器,以将量子通信的范围扩展到更长的距离。该项目将开发一种激进但实用的新方法来使用光子编码量子信息。光束中的光子具有四种不同的特性,其中任何一种都可以用于编码量子信息:偏振(例如,垂直或水平)、二维光束轮廓(空间形状)和时间形状(光脉冲期间亮度的时间变化)。为了充分利用光在量子网络中传输信息,必须能够根据与这些属性中的每一个相关联的状态来操纵和分类光束。虽然偏振和空间光束轮廓先前已被开发为用于在光子上编码量子信息的手段,但光子的时间形状在很大程度上未被认识为重要的潜在技术。该项目致力于通过开发利用光子时间形状编码信息的方法来完成基于光子的QIS的“工具包”。这种方法预测的好处在于:1)它允许在单个光子上编码一个以上的信息,2)编码方法对于在长光纤中传播时发生的光的变化具有鲁棒性,以及3)该方法与基于原子的量子光存储器很好地接口,这将用于未来量子互联网的构建。 控制量子系统在科学和信息技术、计量学、量子化学和纳米力学中具有广泛的兴趣。光学技术和基于量子光学的信息科学提供了将研究与科学教育相结合的绝佳机会。为提高非理科专业通识教育的质量,体育教育专业应加强通识教育。2010年,在俄勒冈州大学共同创立了科学素养项目(SLP),并担任其联合主任。SLP为许多研究生和本科科学专业的学生提供了指导教学的机会,他们在科学素养课程中担任共同讲师。他开发并教授了一门SLP课程,量子物理学,向非科学专业的学生介绍量子信息科学,使用主动学习技术来吸引学生。他将继续担任SLP联合主任。从更技术的角度来看,该项目将发展这样一种想法,即在QIS中,光子的时间模式(TM),以及更普遍的光场,应该与偏振和横模平等看待。TM是具有相同载波频率、偏振和横向空间模式的波包模式,并且占据相同的时间仓,但是仍然是时间正交的。为了开发用作量子位和量子位的TM,所需的核心技术是量子脉冲门(QPG),它将实现场正交TM的近100%高效空间排序。基于他们最近提出的时间模式干涉(TMI)方法,研究人员将展示一个完整的量子信息框架的元素,该框架采用单光子时间模式的场正交性。这三个要求-资源状态的生成,目标和有效的操作TM,以及它们的检测和表征-可以用当前的技术来满足。特别是,研究人员将从实验和理论上研究使用量子脉冲门器件作为基本构建块来实现单量子位量子逻辑操作(Pauli-X,-Y和-Z门;和相移门)的方法。他们还将证明,QPG可以作为一个实时可控开关,是时间模式选择,通过改变相移内部的设备。此外,他们还将展示使用一种新形式的量子态层析成像来验证这种门操作的保真度的方法,这种方法可以直接在TM基础上确定量子态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Raymer其他文献

Michael Raymer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Raymer', 18)}}的其他基金

Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
  • 批准号:
    2041809
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
  • 批准号:
    1839216
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
  • 批准号:
    1820789
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1406354
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1068865
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    1101811
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    0802109
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems
原子、分子和光学系统的量子相干和纠缠
  • 批准号:
    0757818
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
  • 批准号:
    0554842
  • 财政年份:
    2006
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
  • 批准号:
    0621723
  • 财政年份:
    2006
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
  • 批准号:
    2305217
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Fellowship Award
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
  • 批准号:
    BB/Y002709/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
  • 批准号:
    FT230100388
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    ARC Future Fellowships
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
  • 批准号:
    23K28346
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了