Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
基本信息
- 批准号:1820789
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a new approach for using photons of light to encode quantum information. In a quantum information network, whose purpose is to store, transmit and manipulate information in ways not possible using classical physics techniques, photons transfer quantum information between network nodes. Single photons are characterized by their color (frequency), polarization orientation, spatial beam profile, and temporal shape. Only recently has the temporal shape of photons been recognized as an underutilized resource for encoding quantum information. The PI will develop methods to encode quantum information in the temporal shape of single-photon wave packets, and to demonstrate means for manipulating such encoded information. This research has the potential to advance quantum information science by improving the ability to store larger amounts of information in single photons in a manner that is compatible with optical-fiber networks. The research will impact the growing field of quantum information technology, including quantum computing, and offers excellent opportunities to integrate science education with research. The research builds on the PI's recent successful demonstration of the crucially needed information-processing device - the quantum pulse gate - that is capable of sorting (and routing) optical pulses according to their temporal shape. The research aims to develop the complete set of conceptual and practical tools needed for performing quantum information operations using temporal (wave-packet) modes of light. Temporal modes (TMs) form a discrete set of field-orthogonal pulse shapes that occupy the same region of time-frequency (phase) space. The researchers recently experimentally demonstrated their proposed method for separating (sorting) temporal modes by using a novel form of optical frequency conversion. Unlike polarization, which is fundamentally a two-state system, the temporal-mode basis offers the possibility for multi-level quantum logic (qudits). For TMs to rise to their potential as a tool for quantum information science, it needs to be demonstrated that all of the quantum resources and operations needed for QIS with temporal modes are available. Specifically, the researchers will work to demonstrate: 1) a source of TM-entangled photons, 2) quantum state tomography in the TM basis, 3) quantum process tomography of the QPG device itself, and 4) coherent and efficient manipulation of light in field-orthogonal TMs to implement single-photon quantum logic gates. Controlling the states of quantum systems is of broad interest in science and information technology, metrology, quantum chemistry, and nano-mechanics. Optical technology and quantum-optics-based information science offer excellent opportunities to integrate research with science education. The PI cofounded in 2010 the Science Literacy Program (SLP) at the University of Oregon, and served as Co-Director, and is currently on the Advisory Board. The SLP provides mentored instructional opportunities to many graduate students and undergraduate science majors serving as co-instructors in science literacy courses, which have impacted thousands of students at the university. During this project the PI will teach and mentor instructors for an SLP course that presents quantum information science to non-science majors, using inquiry-based-learning techniques to engage students. The PI has published a popular-level book for the course, Quantum Physics: What Everyone Needs to Know (Oxford, 2017), and will continue promoting education using material from this book as part of this project. A PhD student working in quantum information science research served as co-instructor to plan the course learning goals, prepare and present several class lectures, write homework and exam questions, and facilitate group problem-solving activities during class sessions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发一种利用光子编码量子信息的新方法。在量子信息网络中,其目的是以使用经典物理技术不可能的方式存储,传输和操纵信息,光子在网络节点之间传输量子信息。单光子的特征在于它们的颜色(频率),偏振方向,空间光束轮廓和时间形状。直到最近,光子的时间形状才被认为是编码量子信息的未充分利用的资源。PI将开发以单光子波包的时间形状编码量子信息的方法,并演示操纵这种编码信息的方法。这项研究有可能通过提高以与光纤网络兼容的方式在单光子中存储大量信息的能力来推进量子信息科学。该研究将影响不断增长的量子信息技术领域,包括量子计算,并提供将科学教育与研究相结合的绝佳机会。该研究建立在PI最近成功演示的关键信息处理设备-量子脉冲门-能够根据其时间形状对光脉冲进行分类(和路由)的基础上。该研究旨在开发一套完整的概念和实用工具,用于使用光的时间(波包)模式执行量子信息操作。时间模式(TM)形成占据时间-频率(相位)空间的相同区域的场正交脉冲形状的离散集合。研究人员最近通过实验证明了他们提出的通过使用一种新形式的光学频率转换来分离(排序)时间模式的方法。与偏振不同,偏振基本上是一个两态系统,时间模式基础为多能级量子逻辑(qudits)提供了可能性。 为了使TM发挥其作为量子信息科学工具的潜力,需要证明具有时间模式的QIS所需的所有量子资源和操作都是可用的。具体来说,研究人员将致力于证明:1)TM纠缠光子的来源,2)TM基础上的量子状态断层扫描,3)QPG设备本身的量子过程断层扫描,以及4)场正交TM中光的相干和有效操纵,以实现单光子量子逻辑门。 控制量子系统的状态在科学和信息技术、计量学、量子化学和纳米力学中具有广泛的兴趣。光学技术和基于量子光学的信息科学提供了将研究与科学教育相结合的绝佳机会。PI于2010年在俄勒冈州大学共同创立了科学素养计划(SLP),并担任联合主任,目前是顾问委员会成员。SLP为许多研究生和本科科学专业的学生提供指导性的教学机会,作为科学素养课程的共同讲师,这影响了该大学数千名学生。在这个项目中,PI将教授和指导SLP课程的教师,该课程将量子信息科学介绍给非科学专业的学生,使用基于探究的学习技术来吸引学生。PI已经为这门课程出版了一本普及级的书,量子物理学:每个人都需要知道的(牛津,2017),并将继续使用这本书中的材料作为该项目的一部分来促进教育。一名从事量子信息科学研究的博士生担任共同讲师,计划课程学习目标,准备和介绍几堂课,写家庭作业和考试问题,并在课堂上促进小组解决问题的活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The US National Quantum Initiative
- DOI:10.1088/2058-9565/ab0441
- 发表时间:2019-02
- 期刊:
- 影响因子:6.7
- 作者:M. Raymer;C. Monroe
- 通讯作者:M. Raymer;C. Monroe
Temporal modes in quantum optics: then and now
- DOI:10.1088/1402-4896/ab6153
- 发表时间:2019-11
- 期刊:
- 影响因子:2.9
- 作者:M. Raymer;I. Walmsley
- 通讯作者:M. Raymer;I. Walmsley
Quantum theory of light in a dispersive structured linear dielectric: a macroscopic Hamiltonian tutorial treatment
色散结构线性电介质中的光量子理论:宏观哈密顿教程处理
- DOI:10.1080/09500340.2019.1706773
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Raymer, Michael G.
- 通讯作者:Raymer, Michael G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Raymer其他文献
Michael Raymer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Raymer', 18)}}的其他基金
Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
- 批准号:
2041809 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
- 批准号:
1839216 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
- 批准号:
1521466 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
- 批准号:
1406354 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
- 批准号:
1068865 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
1101811 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
0802109 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems
原子、分子和光学系统的量子相干和纠缠
- 批准号:
0757818 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
- 批准号:
0554842 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
- 批准号:
0621723 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似海外基金
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship Award
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
- 批准号:
BB/Y002709/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
- 批准号:
FT230100388 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
ARC Future Fellowships
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
- 批准号:
DE240100668 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Early Career Researcher Award
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
- 批准号:
23K28346 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant














{{item.name}}会员




