Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems

原子、分子和光学系统的量子相干和纠缠

基本信息

  • 批准号:
    0757818
  • 负责人:
  • 金额:
    $ 44.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This research program aims to understand and control quantum coherence and entangled states in atomic, molecular, and optical (AMO) systems. An entangled state of a compound subsystem is one that cannot be described in terms of separate realistic descriptions of its subsystems. Entangled states are central in studies of quantum information processing, which in addition to showing the way towards new technologies, such as quantum computers or quantum cryptography, may lead to deeper understanding of quantum mechanics. An important development in AMO Physics is the study of collective atomic-ensemble variables, which provide an interface between microscopic degrees of freedom, such as single-photon wave packets, and macroscopic degrees of freedom, such as electronic, vibrational or rotational, in a gas or vapor. Two themes are being pursued: (1) Mesoscopic-level entanglement of collective electronic excitation in the ground states of rubidium vapor, and (2) Exploration of a new platform--hollow core photonic crystal fibers--for use in quantum optics. Theme (1) seeks to extend recent experiments on number-state entanglement of atomic ensembles and optical fields at the one- and two-photon level to the 5-to-20 photon level. This requires state-of-the-art advances in both photon-number-resolving detection and in the measurement of higher-order field statistical moments. This tests the hypothesis that entanglement is a robust feature of nature even in the macroscopic world, but that detecting it becomes progressively more difficult technically as the excitation number becomes large. At some high excitation number, the quantum theory could either become irrelevant or break down. The experiment has several unique aspects: i) A new type of photon-number-resolving detector--a back-illuminated drift silicon photomultiplier--is being used to measure Stokes light pulses, thereby creating non-Gaussian atomic-ensemble entanglement in the 5-20 excitation-number regime. ii) To verify entanglement the researchers are developing balanced homodyne correlation, using a more practical scheme based on a CCD camera rather than multiple beam splitters as originally conceived. Theme (2) extends the research into a new promising area: hollow-core photonic crystal fibers (HC-PCF). In collaboration with a group at Bath University, the research team will undertake exploratory studies of rubidium-filled, hydrogen-filled, and xenon-filled HC-PCF. The long path lengths and tight, controlled optical confinement make these systems promising for ultralow-intensity nonlinear quantum optics, including creation of ultrawide-band comb-spectrum fields, photon pair generation, four-mode optical entanglement, atom-field entanglement, and others. The research will contribute broadly to the understanding of quantum entanglement and its measurement. This may impact studies of the foundations of quantum physics as well as quantum information science. Education of graduate students and undergraduate students is foremost in the planning of the project. Undergraduate students will be involved through REU programs. Important collaborative aspects of the project include close interaction with the theory group of Prof. Steven van Enk at the University of Oregon, experimental collaboration with Prof. F. Benabid at Bath University in England on HC-PCF, and technical collaboration with H.-G. Moser at Max Planck Institute in Garching, Germany on photon-number-resolving detectors. The PI is involved in various outreach efforts, including public lectures, new course development and textbook authoring, in an effort to bring physics to a wider audience. He is involved in international outreach through summer schools and research collaborations. And, the PI was founding Director of the Oregon Center for Optics at the UO, a synergistic center involving faculty and students from physics and chemistry.
本研究计划旨在了解和控制原子、分子和光学(AMO)系统中的量子相干和纠缠态。复合子系统的纠缠态是一种不能用对其子系统单独的现实描述来描述的状态。纠缠态是量子信息处理研究的核心,它除了为量子计算机或量子密码学等新技术指明方向外,还可能导致对量子力学的更深入理解。AMO物理学的一个重要发展是对集体原子系综变量的研究,它提供了微观自由度(如单光子波包)和宏观自由度(如气体或蒸气中的电子、振动或旋转)之间的接口。目前正在研究两个主题:(1)铷蒸气基态中集体电子激发的介观水平纠缠;(2)探索用于量子光学的新平台——空心核心光子晶体光纤。主题(1)试图将最近在单光子和双光子水平上的原子系综和光场的数态纠缠实验扩展到5到20光子水平。这需要在光子数分辨探测和高阶场统计矩测量方面取得最先进的进展。这一实验验证了这样一个假设:即使在宏观世界中,纠缠也是自然界的一个强大特征,但随着激发数的增加,从技术上探测纠缠变得越来越困难。在某个高激发态数下,量子理论要么变得无关紧要,要么崩溃。该实验有几个独特的方面:i)一种新型的光子数分辨探测器——背照光漂移硅光电倍增管——正被用于测量斯托克斯光脉冲,从而在5-20激发数状态下产生非高斯原子系综纠缠。ii)为了验证纠缠,研究人员正在开发平衡同差相关,使用一种更实用的方案,基于CCD相机,而不是最初设想的多个分束器。主题(2)将研究扩展到一个新的前景领域:空心光子晶体光纤(HC-PCF)。研究小组将与巴斯大学的一个小组合作,对充满铷、氢气和氙的HC-PCF进行探索性研究。长路径长度和严格的可控光约束使这些系统有望用于超低强度非线性量子光学,包括超宽带梳状光谱场的产生、光子对的产生、四模光纠缠、原子场纠缠等。该研究对理解量子纠缠及其测量具有重要意义。这可能会影响量子物理和量子信息科学的基础研究。对研究生和本科生的教育是项目规划的重中之重。本科生将通过REU项目参与。该项目的重要合作方面包括与俄勒冈大学Steven van Enk教授的理论小组的密切互动,与英国巴斯大学F. Benabid教授在HC-PCF上的实验合作,以及与H.-G.的技术合作。莫泽在德国加兴的马克斯普朗克研究所研究光子数分辨探测器。PI参与了各种推广工作,包括公开讲座、新课程开发和教科书编写,努力将物理学带给更广泛的受众。他通过暑期学校和研究合作参与国际推广活动。此外,PI还是俄勒冈大学俄勒冈光学中心的创始主任,这是一个涉及物理和化学教职员工和学生的协同中心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Raymer其他文献

Michael Raymer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Raymer', 18)}}的其他基金

Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
  • 批准号:
    2041809
  • 财政年份:
    2020
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
  • 批准号:
    1839216
  • 财政年份:
    2018
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
  • 批准号:
    1820789
  • 财政年份:
    2018
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
  • 批准号:
    1521466
  • 财政年份:
    2015
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1406354
  • 财政年份:
    2014
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
  • 批准号:
    1068865
  • 财政年份:
    2011
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    1101811
  • 财政年份:
    2011
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
  • 批准号:
    0802109
  • 财政年份:
    2008
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
  • 批准号:
    0554842
  • 财政年份:
    2006
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
  • 批准号:
    0621723
  • 财政年份:
    2006
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
第十届相干散射和相位恢复科学与技术国际会议(Coherence2020)
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    15 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324299
  • 财政年份:
    2023
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324301
  • 财政年份:
    2023
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Standard Grant
Developing Quantum-Optical Measurements of Excitonic Coherence for Quantum Entanglement in Single Organic Molecules
开发单个有机分子中量子纠缠的激子相干性的量子光学测量
  • 批准号:
    EP/V048805/1
  • 财政年份:
    2021
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Research Grant
Applications and tests of mesoscopic quantum coherence and entanglement
介观量子相干与纠缠的应用与测试
  • 批准号:
    DP180102470
  • 财政年份:
    2018
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Discovery Projects
Quantum Coherence with Holmium Atoms: Magic Traps, Clocks, and Entanglement
钬原子的量子相干性:魔法陷阱、时钟和纠缠
  • 批准号:
    1707854
  • 财政年份:
    2017
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
Rydberg units interfaced: Coherence and Entanglement
里德伯单位接口:相干和纠缠
  • 批准号:
    316184575
  • 财政年份:
    2016
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Priority Programmes
Coherence and entanglement of fluorine impurity spin-qubits in ZnSe (A02)
ZnSe (A02) 中氟杂质自旋量子位的相干性和纠缠
  • 批准号:
    269899925
  • 财政年份:
    2015
  • 资助金额:
    $ 44.8万
  • 项目类别:
    CRC/Transregios
QMHP: Entanglement and Coherence Decay in Nanosystems and Applications to Quantum Information Systems
QMHP:纳米系统中的纠缠和相干衰变及其在量子信息系统中的应用
  • 批准号:
    1125675
  • 财政年份:
    2011
  • 资助金额:
    $ 44.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了