Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
基本信息
- 批准号:1068865
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This program aims to develop a near-ideal material medium for generating and manipulating nonclassical states of light for fundamental studies in quantum information science. By ideal we mean photon-atom interactions in a system having isolated degrees of freedom that may evolve to become entangled among themselves without becoming entangled to any reservoir of unmonitored auxiliary systems. The system being developed is comprised of ultrahigh-density xenon gas confined to the interior of a hollow-core photonic crystal fiber (PCF), which can guide tightly focused light over several meters, enhancing the light-matter interaction. This system combines several outstanding properties, making it ideal for use as a medium for four-wave mixing interactions between light beams, including photon pair generation, mode entanglement, optical frequency comb generation, and soliton propagation. Being a fluid (at temperature 16 C and pressure 57 bar), near-critical Xe has variable density like a gas, but at the same time has a very high third-order optical nonlinearity -- approaching that of solid silica glass, which is the standard fiber-based medium now in wide use. Being an atomic gas, Xe has negligible levels of Raman and Brillouin scattering, which are severe impediments to current studies using silica as a nonlinear-optical medium. In the high-density Xe system we expect to see reduced noise signals and enhanced entanglement in photon generation, and reduced noise and enhanced quantum squeezing in frequency comb generation and soliton propagation, enabling deeper fundamental studies of these phenomena. Challenges include designing Xe-filled PCF to have the needed dispersion properties for phase matching the nonlinear-optical processes of interest. Such a new medium could find widespread use in the optical quantum-information community, and could transform our abilities to perform all-optical quantum-state generation and manipulation tasks.Quantum information technology aims to create, store, transmit, and process information in ways not possible using classical-physics-based techniques. For this we need "ideal interactions" between light and matter, with which to transfer information between two physical systems without having that information partially "leak" into the surroundings. Such leakage would destroy the quantum "integrity" of the systems (atoms or photons) being used to store and process the quantum information. Such ideal interactions are at the heart of proposed quantum optical technologies, such as secure long-distance communication and quantum computing using photon states. In order for such technologies to become useful, we need nearly ideal methods to prepare, control, and manipulate quantum states of photons and optical fields.For this purpose we are developing a unique optical material system -- high-density xenon gas confined to the interior of a hollow-core optical fiber -- which can guide tightly focused light over several meters, enhancing the light-matter interaction. Such a system is projected to enhance the interaction of light with xenon gas -- the most highly interacting of the nobel gases -- by several orders of magnitude compared with room-pressure gas in a standard gas cell. When intense laser light passes through such a gas, its frequency spectrum can be altered in a predictable way, generating many new frequencies, while maintaining the "integrity" of the quantum state of the light. This offers the possibility to create "quantum-entangled" states of many light waves having different frequencies. This interaction can also create quantum solitons, which are light pulses that travel in the xenon gas without becoming stretched in time, as usually occurs when light pulses propagate. Studying solitons can provide tests of the most sophisticated quantum field theories for describing the light-mater interaction.Quantum optics offers excellent opportunities to integrate research with science education. PhD students currently involved in the PI's research have contributed to the NSF's GK-12 Program, which pairs PhD students with high schools and middle schools, exposing their students to the idea of research as a career. High-school students, undergraduate students, Masters and PhD students, as well as visiting scientists, have all been involved in the groups' research in recent years. Students also participate as co-instructors of courses in a new Science Literacy Program at the University of Oregon, co-directed by the PI.
该计划旨在开发一种近乎理想的材料介质,以生成和操纵非古典光状态,以用于量子信息科学领域的基本研究。从理想来看,我们的意思是,在具有孤立的自由度的系统中,光子原子的相互作用可能发展为纠缠在一起而不纠缠于任何不受监测的辅助系统的储层。所开发的系统由局限于空心光子晶体纤维(PCF)内部的超高密度氙气组成,该气体可以引导在几米上紧密聚焦的光线,从而增强了轻质的相互作用。该系统结合了几个出色的特性,使其非常适合用作光束之间的四波混合相互作用的介质,包括光子对生成,模式纠缠,光频梳子的产生和孤子传播。作为液体(在温度为16 C和压力57 bar),接近临界的XE具有可变密度,但同时具有很高的三阶光学非线性 - 接近固体硅胶玻璃的密度,这是现在广泛使用的基于标准的纤维介质。作为一种原子气体,XE具有可忽略不计的拉曼和布里渊散射,这是对使用二氧化硅作为非线性光学培养基的当前研究的严重障碍。在高密度XE系统中,我们期望在光子产生中会看到噪声信号减少和增强的纠缠,并减少噪声和增强的频率梳子产生和孤子传播的量子挤压,从而使这些现象的更深入的基本研究。挑战包括设计充满XE的PCF以具有所需的分散属性,以匹配目的的非线性光学过程。这种新的媒介可以在光学量子信息社区中找到广泛的用途,并可以改变我们执行全光量子状态生成和操纵任务的能力。QuantumInformation Technology旨在使用基于经典物理学的技术来创建,存储,传输和处理信息。为此,我们需要在光与物质之间进行“理想的互动”,并在两个物理系统之间传输信息,而不会部分将这些信息部分“泄漏”到周围环境中。这种泄漏将破坏用于存储和处理量子信息的系统(原子或光子)的量子“完整性”。这种理想的相互作用是建议的量子光学技术的核心,例如使用光子状态的安全长距离通信和量子计算。为了使此类技术变得有用,我们需要几乎理想的方法来准备,控制和操纵光子和光场的量子状态。在此目的中,我们正在开发一个独特的光学材料系统 - 限制在空心核心光纤内部的高密度Xenon气体 - 可以将光线紧密地集中在几个仪表上,从而增强光线的互动。与标准气电池中的室压气相比,这种系统预计将通过几个数量级来增强光与氙气气体的相互作用 - 诺贝尔气体的相互作用最高。当激光光线通过这种气体时,它的频谱可以以可预测的方式改变,从而产生许多新频率,同时保持光的量子状态的“完整性”。这提供了创建具有不同频率的许多光波的“量子键入”状态的可能性。这种相互作用还可以产生量子孤子,这些量子是在Xenon气体中传播的光脉冲而不会及时伸展的光脉冲,因为通常在光脉冲传播时会发生。研究孤子可以为描述轻型互动的最复杂的量子场理论提供测试。QuantumOptics为将研究与科学教育融为一体提供了绝佳的机会。目前参与PI研究的博士生为NSF的GK-12计划做出了贡献,该计划将博士生与高中和中学配对,使他们的学生成为研究的想法。近年来,高中生,本科生,硕士和博士生以及来访的科学家都参与了小组的研究。学生还参加由PI共同执导的俄勒冈大学的新科学素养课程的共同教师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Raymer其他文献
Michael Raymer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Raymer', 18)}}的其他基金
Quantum Leap Grantees Meeting 2020
2020 年量子飞跃受资助者会议
- 批准号:
2041809 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
RAISE-TAQS: Quantum Advantage of Broadband Entangled Photon Pairs in Spectroscopy and Metrology
RAISE-TAQS:宽带纠缠光子对在光谱学和计量学中的量子优势
- 批准号:
1839216 - 财政年份:2018
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
- 批准号:
1820789 - 财政年份:2018
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Photon Temporal Modes as a Quantum Information Resource
作为量子信息资源的光子时间模式
- 批准号:
1521466 - 财政年份:2015
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Fundamental Quantum Optics in Hollow-Core Photonic Crystal Fibers
空心光子晶体光纤中的基础量子光学
- 批准号:
1406354 - 财政年份:2014
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
1101811 - 财政年份:2011
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Engineering and controlling photon states in photonic crystal fiber
光子晶体光纤中光子态的工程和控制
- 批准号:
0802109 - 财政年份:2008
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Quantum Coherence and Entanglement with Atomic, Molecular and Optical Systems
原子、分子和光学系统的量子相干和纠缠
- 批准号:
0757818 - 财政年份:2008
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
PIF: Spatial-Temporal Control of Photons for Quantum Information Processing
PIF:用于量子信息处理的光子时空控制
- 批准号:
0554842 - 财政年份:2006
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Strong-Coupling of Quantum Dots and Microcavities for Efficient Single Photon Sources and Quantum Logic
量子点和微腔的强耦合,用于高效的单光子源和量子逻辑
- 批准号:
0621723 - 财政年份:2006
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
相似国自然基金
原子-微纳波导系统中的非厄米非线性与量子光学效应研究
- 批准号:12374303
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
量子点光学膜的原位动态高光谱监测与主动学习优化
- 批准号:22305015
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
光与物质相互作用模型中A平方问题及其量子相变研究
- 批准号:12305009
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于里德堡单光子源阵列的量子光学研究
- 批准号:12374329
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
自陷域激子量子点能带工程及其光学性质研究
- 批准号:22371090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Rapid and high-contrast photothermal microscopy with a novel tunable ZGP source
具有新型可调谐 ZGP 光源的快速高对比度光热显微镜
- 批准号:
10600781 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Fundamental technologies for scalable photonic quantum information processing based on nonlinear optics
基于非线性光学的可扩展光子量子信息处理基础技术
- 批准号:
20H01839 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental studies on quantum beam-induced reaction processes under extreme conditions for establishing LWR water chemistry
极端条件下量子束诱导反应过程的基础研究,建立轻水堆水化学
- 批准号:
20H02667 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanopore-based multi-target analysis of Zika virus infection
基于纳米孔的寨卡病毒感染多靶点分析
- 批准号:
10181749 - 财政年份:2019
- 资助金额:
$ 68万 - 项目类别: