Collaborative Research: Multiscale Proximity Algorithms for Optimization Problems Arising from Image/Signal Processing
协作研究:图像/信号处理优化问题的多尺度逼近算法
基本信息
- 批准号:1522332
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Restoring images or signals from limited available data is required in variety of applications, including parallel magnetic resonance imaging in medical applications and fingerprint and face recognition in security identification. Such image or signal reconstruction problems are often modeled as large-scale optimization problems. This research project aims to develop more efficient computational algorithms for solving these optimization problems. Results of this project are anticipated to have an impact in practical applications. In particular, the numerical schemes under development are expected to support medical imaging research and assist in improving the accuracy of clinical decisions. Senior undergraduate and graduate students are trained in the course of this project. This research project aims to develop multiscale proximity algorithms for optimization problems arising in image or signal processing. Signal processing problems of practical importance, such as incomplete data recovery, compressive sensing, and matrix completion, are modeled as optimization problems that have non-differentiable objective functions. A signal of interest naturally has a hierarchical structure or allows itself to be sparsely represented in a multiscale analysis. Multiscale analysis, as a convenient tool for computation, however, is mainly used to sparsify the underlying signal in formulating optimization problems; it is not fully exploited in development of efficient algorithms for optimization problems. In this project, to make systematic use of the hierarchical structure that exists in optimization problems of interest, the investigators will synthesize and combine multiscale analysis and proximity algorithms to solve the problems in an accurate and computationally efficient way.
在各种应用中需要从有限的可用数据恢复图像或信号,包括医疗应用中的并行磁共振成像以及安全识别中的指纹和面部识别。这样的图像或信号重建问题通常被建模为大规模优化问题。 本研究计画旨在发展更有效率的演算法来解决这些最佳化问题。预计该项目的结果将在实际应用中产生影响。特别是,正在开发的数值计划,预计将支持医学成像研究,并协助提高临床决策的准确性。在本项目的过程中,对高年级本科生和研究生进行培训。本研究计划旨在发展多尺度邻近演算法,以解决影像或讯号处理中的最佳化问题。信号处理问题的实际意义,如不完整的数据恢复,压缩感知,矩阵完成,建模为优化问题,具有不可微的目标函数。感兴趣的信号自然具有层次结构,或者允许其本身在多尺度分析中稀疏地表示。多尺度分析,作为一种方便的计算工具,然而,主要是用来稀疏的基础信号在制定优化问题,它没有充分利用在开发有效的算法优化问题。在这个项目中,为了系统地利用感兴趣的优化问题中存在的层次结构,研究人员将综合和联合收割机多尺度分析和邻近算法,以准确和计算效率高的方式解决问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lixin Shen其他文献
Determination of Velocity and Skin Friction Fields from Images by Solving Projected Motion Equations
通过求解投影运动方程从图像中确定速度和皮肤摩擦场
- DOI:
10.1109/iciasf.2007.4380878 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Tianshu Liu;Lixin Shen - 通讯作者:
Lixin Shen
Achieving high availability and performance computing with an HA-OSCAR cluster
通过HA-OSCAR集群实现高可用性和高性能计算
- DOI:
10.1016/j.future.2003.12.026 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
C. Leangsuksun;Lixin Shen;Tong Liu;S. Scott - 通讯作者:
S. Scott
Web Services Dynamic Discovery Based on Modified CLIQUE Algorithm
基于改进CLIQUE算法的Web服务动态发现
- DOI:
10.1109/iita.workshops.2008.21 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Lixin Shen;Yan Chen;Zhiguo Wang;Weihong Yu;Sen He;Shoudong Zhang - 通讯作者:
Shoudong Zhang
MAT 781: Advanced Numerical Methods: Nonlinear Programming, Fall 2013
MAT 781:高级数值方法:非线性规划,2013 年秋季
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lixin Shen - 通讯作者:
Lixin Shen
Expectation maximization SPECT reconstruction with a content-adaptive singularity-based mesh-domain image model
使用基于内容自适应奇点的网格域图像模型进行期望最大化 SPECT 重建
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yao Lu;H. Ye;Yuesheng Xu;Xiaofei Hu;L. Vogelsang;Lixin Shen;D. Feiglin;E. Lipson;A. Król - 通讯作者:
A. Król
Lixin Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lixin Shen', 18)}}的其他基金
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208385 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Sparse Optimization in Large Scale Data Processing: A Multiscale Proximity Approach
协作研究:大规模数据处理中的稀疏优化:多尺度邻近方法
- 批准号:
1913039 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Proximity Algorithms for Optimization Problems Arising from Image Processing
协作研究:图像处理优化问题的邻近算法
- 批准号:
1115523 - 财政年份:2011
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2331017 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
- 批准号:
2316676 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant