Numerical Algorithms and Simulations for Multiphase Flows of Multiple Immiscible Incompressible Fluids

多种不混溶不可压缩流体多相流的数值算法与模拟

基本信息

  • 批准号:
    2012415
  • 负责人:
  • 金额:
    $ 20.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This research project aims to develop mathematical and computational tools, methods, and algorithms for simulating and understanding a class of multiphase multicomponent flow problems that are of practical engineering significance and fundamental physical importance. The systems under study in this project have relevance to the environment, energy, and materials science. For example, such multiphase systems occur in modeling for remediation of oil spills. Another example is the novel class of functional surfaces called liquid infused surfaces discovered in the past decade, which exhibit a variety of attractive properties such as self-cleaning, anti-icing and anti-fouling. These multiphase multicomponent problems underlie numerous technological advances, from printed electronic circuits and sensors, to opto-fluidic microscopes and waveguides, to water-resistant fabrics, to oil recovery and carbon sequestration. The project aims to develop improved efficient and effective computational methods to tackle the challenges in simulations for such systems. This project provides research training opportunities for graduate and undergraduate students. The research aims at devising efficient and effective methods for simulating and understanding the dynamics of a system of three or more immiscible incompressible fluids with different physical properties such as densities, viscosities, and pairwise surface tensions. These systems pose enormous computational and algorithmic challenges to numerical simulations, because of the multitude of fluid interfaces, three-phase lines, and contact lines and contact angles involved. The project builds upon the reduction-consistent and thermodynamically-consistent formulations developed in recent years and will provide computational prediction capability and effective techniques for illuminating and understanding the interactions among multiple fluid components, multiple types of fluid interfaces, and multiple types of contact lines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在开发数学和计算工具、方法和算法来模拟和理解一类具有实际工程意义和基本物理意义的多相多组分流动问题。该项目中正在研究的系统与环境、能源和材料科学相关。例如,这样的多相系统出现在溢油补救的建模中。另一个例子是在过去的十年中发现的一种被称为液体注入表面的新型功能表面,它表现出各种吸引人的特性,如自清洁、防结冰和防污垢。这些多相多组分问题是许多技术进步的基础,从印刷电子电路和传感器,到光流控显微镜和波导,到防水织物,再到石油回收和碳封存。该项目旨在开发改进的高效和有效的计算方法,以应对此类系统模拟中的挑战。该项目为研究生和本科生提供研究培训机会。这项研究旨在设计有效的方法来模拟和理解三种或三种以上不相容的不可压缩流体系统的动力学,这些流体具有不同的物理性质,如密度、粘度和成对的表面张力。这些系统给数值模拟带来了巨大的计算和算法挑战,因为涉及到大量的流体界面、三相线、接触线和接触角。该项目建立在近年来开发的还原一致性和热力学一致性公式的基础上,并将提供计算预测能力和有效技术,以阐明和了解多种流体成分、多种类型的流体界面和多种类型的接触线之间的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks
  • DOI:
    10.1016/j.jcp.2021.110242
  • 发表时间:
    2021-03-04
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Dong, Suchuan;Ni, Naxian
  • 通讯作者:
    Ni, Naxian
Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations
A Method for Computing Inverse Parametric PDE Problems with Random-Weight Neural Networks
  • DOI:
    10.1016/j.jcp.2023.112263
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dong;Yiran Wang
  • 通讯作者:
    S. Dong;Yiran Wang
A Modified Batch Intrinsic Plasticity Method for Pre-training the Random Coefficients of Extreme Learning Machines
  • DOI:
    10.1016/j.jcp.2021.110585
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Dong;Zongwei Li
  • 通讯作者:
    S. Dong;Zongwei Li
An unconditionally energy-stable scheme for the convective heat transfer equation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suchuan Dong其他文献

Simulating and visualizing the human arterial system on the TeraGrid
  • DOI:
    10.1016/j.future.2006.03.019
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis
  • 通讯作者:
    George Karniadakis
Physics-informed neural networks for approximating dynamic (hyperbolic) PDEs of second order in time: Error analysis and algorithms
用于近似二阶动态(双曲)偏微分方程的物理神经网络:误差分析和算法
  • DOI:
    10.1016/j.jcp.2023.112527
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanxia Qian;Yongchao Zhang;Yunqing Huang;Suchuan Dong
  • 通讯作者:
    Suchuan Dong
Numerical approximation of partial differential equations by a variable projection method with artificial neural networks
用带人工神经网络的变分投影法对偏微分方程的数值逼近
Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps
植入金的等离子体石英板作为激光驱动光声微流体泵的发射台
  • DOI:
    10.1073/pnas.1818911116
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiuhui Zhang;Shuai Yue;Feng Lin;Njumbe Epie;Suchuan Dong;Xiaonan Shan;Dong Liu;Wei-Kan Chu;Zhiming Wang;Jiming Bao
  • 通讯作者:
    Jiming Bao
A Functionally Connected Element Method for Solving Boundary Value Problems
求解边值问题的函数连通元法
  • DOI:
    10.48550/arxiv.2403.06393
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jielin Yang;Suchuan Dong
  • 通讯作者:
    Suchuan Dong

Suchuan Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suchuan Dong', 18)}}的其他基金

Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
  • 批准号:
    1522537
  • 财政年份:
    2015
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Joint Diagonalization-Based Spectral Element Approach
基于联合对角化的谱元方法
  • 批准号:
    1318820
  • 财政年份:
    2013
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Continuing Grant
An Efficient High-Order Method for Fluid-Structure Interactions
一种高效的流固耦合高阶方法
  • 批准号:
    0810929
  • 财政年份:
    2008
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research - Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究 - 培训模拟科学家掌握先进的网络基础设施工具和概念
  • 批准号:
    0636252
  • 财政年份:
    2006
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309733
  • 财政年份:
    2023
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309732
  • 财政年份:
    2023
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309731
  • 财政年份:
    2023
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
  • 批准号:
    2143625
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Continuing Grant
RSE training in algorithms for exascale simulations
百亿亿次模拟算法的 RSE 培训
  • 批准号:
    EP/W035782/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Research Grant
Collaborative Research: Advancing Chemical Separation Simulations: Computational Algorithms and Optimization with Implicit Adsorption Isotherms
合作研究:推进化学分离模拟:计算算法和隐式吸附等温线优化
  • 批准号:
    2011911
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, Algorithms, Simulations, and Applications for Three-Phase Systems with Solidification and Moving Contact Lines
协作研究:具有凝固和移动接触线的三相系统的模型、算法、仿真和应用
  • 批准号:
    2012480
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, Algorithms, Simulations, and Applications for Three-Phase Systems with Solidification and Moving Contact Lines
协作研究:具有凝固和移动接触线的三相系统的模型、算法、仿真和应用
  • 批准号:
    2012490
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Catalyst Project: Computer algorithms and simulations for CT image reconstruction and segmentation utilizing optimal sampling lattices and efficient domains
Catalyst 项目:利用最佳采样点阵和有效域进行 CT 图像重建和分割的计算机算法和模拟
  • 批准号:
    2000158
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Chemical Separation Simulations: Computational Algorithms and Optimization with Implicit Adsorption Isotherms
合作研究:推进化学分离模拟:计算算法和隐式吸附等温线优化
  • 批准号:
    2011902
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了