An Efficient High-Order Method for Fluid-Structure Interactions
一种高效的流固耦合高阶方法
基本信息
- 批准号:0810929
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses mathematical, algorithmic, and computational issues for coupling the three-dimensional Navier-Stokes equations and the three-dimensional nonlinear elastodynamic equations to achieve high-order accuracy. The transmission conditions between the fluid and structure will be enforced exactly with the proposed formulation, which allows for the fluid and structure sub-problems to be computed independently and in parallel, greatly facilitating the solution of such systems on massively parallel computers. The elastodynamic equations and the Navier-Stokes equations are solved employing identical set of high-order basis functions, substantially simplifying the implementation of transmission conditions between the fluid and the structure. Scalable algorithms for efficient computations of large-scale fluid-structure problems are proposed and investigated.Fluid-structure interaction is omnipresent in natural and man-made environments, and underlies many engineering, physical and biological applications. Wind rustling leaves and ringing chimes, hurricanes breaching levees and destroying a community or an entire city, circulating blood in normal or diseased arteries inducing favorable conditions for the formation of aneurysms or atherosclerotic plaques, are several immediate examples. The proposed research will enable accurate computations of fluid-structure interactions. This will bring about unprecedented predictive capabilities and profoundly impact many scientific disciplines.
本计画针对三维Navier-Stokes方程与三维非线性弹性动力学方程耦合以达到高阶精度的数学、算法与计算问题。流体和结构之间的传输条件将与建议的配方,这使得流体和结构的子问题,以独立和并行计算,大大方便了大规模并行计算机上的解决方案,这样的系统将被严格执行。弹性动力学方程和Navier-Stokes方程采用相同的高阶基函数求解,大大简化了流体和结构之间的传输条件的实现。流固耦合问题在自然和人工环境中无处不在,是许多工程、物理和生物应用的基础。 风吹落树叶和钟声,飓风冲破堤坝摧毁社区或整个城市,正常或患病动脉中的血液循环为动脉瘤或动脉粥样硬化斑块的形成提供了有利条件,这些都是直接的例子。拟议的研究将能够精确计算流体-结构相互作用。这将带来前所未有的预测能力,并深刻影响许多科学学科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suchuan Dong其他文献
Simulating and visualizing the human arterial system on the TeraGrid
- DOI:
10.1016/j.future.2006.03.019 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:
- 作者:
Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis - 通讯作者:
George Karniadakis
Physics-informed neural networks for approximating dynamic (hyperbolic) PDEs of second order in time: Error analysis and algorithms
用于近似二阶动态(双曲)偏微分方程的物理神经网络:误差分析和算法
- DOI:
10.1016/j.jcp.2023.112527 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yanxia Qian;Yongchao Zhang;Yunqing Huang;Suchuan Dong - 通讯作者:
Suchuan Dong
Numerical approximation of partial differential equations by a variable projection method with artificial neural networks
用带人工神经网络的变分投影法对偏微分方程的数值逼近
- DOI:
10.1016/j.cma.2022.115284 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:7.300
- 作者:
Suchuan Dong;Jielin Yang - 通讯作者:
Jielin Yang
Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps
植入金的等离子体石英板作为激光驱动光声微流体泵的发射台
- DOI:
10.1073/pnas.1818911116 - 发表时间:
2019-03 - 期刊:
- 影响因子:0
- 作者:
Qiuhui Zhang;Shuai Yue;Feng Lin;Njumbe Epie;Suchuan Dong;Xiaonan Shan;Dong Liu;Wei-Kan Chu;Zhiming Wang;Jiming Bao - 通讯作者:
Jiming Bao
A Functionally Connected Element Method for Solving Boundary Value Problems
求解边值问题的函数连通元法
- DOI:
10.48550/arxiv.2403.06393 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jielin Yang;Suchuan Dong - 通讯作者:
Suchuan Dong
Suchuan Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suchuan Dong', 18)}}的其他基金
Numerical Algorithms and Simulations for Multiphase Flows of Multiple Immiscible Incompressible Fluids
多种不混溶不可压缩流体多相流的数值算法与模拟
- 批准号:
2012415 - 财政年份:2020
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
- 批准号:
1522537 - 财政年份:2015
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Joint Diagonalization-Based Spectral Element Approach
基于联合对角化的谱元方法
- 批准号:
1318820 - 财政年份:2013
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
CI-TEAM Implementation Project: Collaborative Research - Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究 - 培训模拟科学家掌握先进的网络基础设施工具和概念
- 批准号:
0636252 - 财政年份:2006
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
- 批准号:
23K03749 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of production system using machine learning method for the made-to-order 3D design by linguistic expression
使用机器学习方法开发生产系统,通过语言表达进行定制 3D 设计
- 批准号:
22H00956 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on higher-order imaging method based on double photon coincidence counting using correlation in multidimensional space
多维空间相关性双光子符合计数高阶成像方法研究
- 批准号:
22H04961 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
First-Order Method-Based Optimization for Dynamical System Control and Its Engineering Applications
基于一阶方法的动力系统控制优化及其工程应用
- 批准号:
22K14279 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of migration order from old villages "Furujima/Motojima" to current villges in the Ryukyu Islands by visualization method
通过可视化方法阐明琉球群岛从旧村庄“古岛/本岛”到现在村庄的迁移顺序
- 批准号:
20K01148 - 财政年份:2020
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of the broadcast method for both the person with higher-order brain dysfunction who has difficulty in recognizing speech-sounds and the others who easily understand them
针对难以识别语音的高阶脑功能障碍者和易于理解语音的其他人的广播方法的研究
- 批准号:
19K01143 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extreme Value Prediction Method of Combined Load Response in a Ship Using KL Expansion Based Wave Representation and Reduced Order Model
基于KL展开的波浪表示和降阶模型的船舶组合载荷响应极值预测方法
- 批准号:
19K04865 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
high-order fluctuations of turbulent flows studied with a novel theoretical method of constructing solutions
用构造解的新颖理论方法研究湍流的高阶波动
- 批准号:
19K03669 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of cultivation guidelines and a method for bulk quantitative analysis of anthocyanin in black rice in order to give a new added value to the products
制定黑米花青素的栽培指南和批量定量分析方法,为产品赋予新的附加值
- 批准号:
19K15798 - 财政年份:2019
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists