Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
基本信息
- 批准号:2049127
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thermal convection in the Earth’s mantle drives plate tectonics. This process transports heat from within the planet, in its core and mantle, to the surface. Heat transport through the mantle is crucial for maintaining the geodynamo in the Earth's core, and the magnetic field which shields the surface from the solar wind. Mantle dynamics depends on the rate of heat transfer by convection, conduction (contact), and radiation (e.g., light). Quantifying the thermal conductivity of mantle and core materials is, thus, critical for understanding Earth’s thermal system, dynamics, and evolution. It is, however, challenging because of the extreme pressures and temperatures prevailing in Earth’s deep interior. Here, the researchers measure the thermal conductivity of lower-mantle minerals and core Fe-rich alloys. They carry out experiments on synthetic materials compressed at the tips of two opposing diamonds, which produces the relevant high pressures. They use high-power lasers to heat up the specimens and vary their temperature. Conductive and radiative thermal properties are extracted using state-of-the-art spectroscopic techniques previously developed by the team. The project gradually unveils the physics of thermal transport at extreme conditions. It advances the Earth Sciences field, as well as adjacent fields in Materials Sciences with potential energy applications. It provides support and training to one postdoctoral associate at Carnegie Institution of Washington, and outreach towards undergraduate and high-school students. The project also fosters an international collaboration with European scientists. The thermal conductivity of materials in Earth’s interior is a key parameter in controlling the thermal history and dynamics of the planet. Thermal properties constrain processes involved in planetary accretion and differentiation, the thermal evolution of mantle and core, and the generation of Earth’s magnetic field. Here, the team focusses on constraining more accurately the heat flow through the outer core and core-mantle boundary (CMB). Experiments in the laser-heated diamond anvil cell (DAC) are combined with modeling of deep Earth temperature profiles. The team applies transient heating and broad band optical spectroscopy, two novel techniques they previously develop; these allow quantifying the conductive and radiative conductivities of the thermal boundary layer. The researchers develop a new technique – the "pulsed electric conductivity" technique – which applied in combination with transient heating allows quantifying the thermal conductivity of the outer core. These experiments are performed on Fe-rich alloys (including the melts), and high-quality relevant minerals (e.g., single crystals of bridgmanite) synthesized in large-volume devices or in situ in the DAC. The starting materials are highly homogeneous glasses fused together in a gas-mixing aerodynamic levitation laser furnace. The project outcomes will provide accurate and consistent estimates of the heat flux through the core and the CMB. These results have strong implications for the understanding of the present-day heat flux at the CMB, the thermal history of Earth and heat transport mechanisms at the bottom of the lower mantle (e.g., via superplumes).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地幔中的热对流驱动着板块构造。这个过程将热量从行星内部的核心和地幔输送到地球表面。通过地幔的热传输对于维持地核中的地球发电机和保护地表免受太阳风影响的磁场至关重要。地幔动力学依赖于对流、传导(接触)和辐射(例如光)的传热率。因此,定量地幔和地核物质的导热系数对于理解地球的热系统、动力学和演化至关重要。然而,这是具有挑战性的,因为地球深处普遍存在极端的压力和温度。在这里,研究人员测量了下地幔矿物和核心富铁合金的热导率。他们对在两颗相对的钻石尖端压缩的合成材料进行实验,这会产生相应的高压。他们使用高功率激光来加热样本并改变它们的温度。导热和辐射热特性是使用该团队先前开发的最先进的光谱技术提取的。该项目逐渐揭开了极端条件下热传输的物理学面纱。它推进了地球科学领域,以及材料科学中具有潜在能源应用的邻近领域。它为华盛顿卡内基研究所的一名博士后助理提供支持和培训,并向本科生和高中生提供服务。该项目还促进了与欧洲科学家的国际合作。地球内部物质的导热系数是控制地球热历史和动力学的关键参数。热性质制约着涉及行星吸积和分化、地幔和地核的热演化以及地球磁场产生的过程。在这里,研究小组专注于更准确地限制通过外核和核-地幔边界(CMB)的热流。在激光加热的金刚石顶压室(DAC)中的实验与深部地球温度分布的模拟相结合。该团队应用了瞬变加热和宽带光学光谱,这是他们之前开发的两项新技术;这些技术可以量化热边界层的传导和辐射传导性。研究人员开发了一种新技术--“脉冲电导”技术--它与瞬变加热相结合,可以量化外核的热导率。这些实验是在大容量装置中或在DAC中原位合成的富铁合金(包括熔体)和高质量的相关矿物(如桥锰矿单晶)上进行的。起始材料是高度均匀的玻璃,在混合气体的空气动力悬浮激光熔炉中熔合在一起。项目成果将对通过堆芯和CMB的热通量提供准确和一致的估计。这些结果对理解CMB的现今热通量、地球的热历史和下地幔底部的热传输机制(例如,通过超强热柱)具有很大的影响。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiative thermal conductivity of single-crystal bridgmanite at the core-mantle boundary with implications for thermal evolution of the Earth
核幔边界处单晶桥锰矿的辐射热导率对地球热演化的影响
- DOI:10.1016/j.epsl.2021.117329
- 发表时间:2022
- 期刊:
- 影响因子:5.3
- 作者:Murakami Motohiko;Goncharov Alexander F.;Miyajima Nobuyoshi;Yamazaki Daisuke;Holtgrewe Nicholas
- 通讯作者:Holtgrewe Nicholas
Thermal conductivity of materials under pressure
- DOI:10.1038/s42254-022-00423-9
- 发表时间:2022-02
- 期刊:
- 影响因子:38.5
- 作者:Yan Zhou;Zuo-Yuan Dong;W. Hsieh;A. Goncharov;Xiao-Jia Chen
- 通讯作者:Yan Zhou;Zuo-Yuan Dong;W. Hsieh;A. Goncharov;Xiao-Jia Chen
Contrasting opacity of bridgmanite and ferropericlase in the lowermost mantle: Implications to radiative and electrical conductivity
- DOI:10.1016/j.epsl.2021.116871
- 发表时间:2021-05
- 期刊:
- 影响因子:5.3
- 作者:S. Lobanov;F. Soubiran;N. Holtgrewe;J. Badro;Jung‐Fu Lin;A. Goncharov
- 通讯作者:S. Lobanov;F. Soubiran;N. Holtgrewe;J. Badro;Jung‐Fu Lin;A. Goncharov
Structure and properties of two superionic ice phases
- DOI:10.1038/s41567-021-01351-8
- 发表时间:2021-10
- 期刊:
- 影响因子:19.6
- 作者:V. Prakapenka;N. Holtgrewe;S. Lobanov;A. Goncharov
- 通讯作者:V. Prakapenka;N. Holtgrewe;S. Lobanov;A. Goncharov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Goncharov其他文献
On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
- DOI:
10.1007/s00365-010-9092-9 - 发表时间:
2010-04-08 - 期刊:
- 影响因子:1.200
- 作者:
Muhammed Altun;Alexander Goncharov - 通讯作者:
Alexander Goncharov
A tribute to Sasha Beilinson
- DOI:
10.1007/s00029-018-0399-x - 发表时间:
2018-02-16 - 期刊:
- 影响因子:1.200
- 作者:
Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk - 通讯作者:
Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
- DOI:
10.1007/s11785-017-0669-1 - 发表时间:
2017-04-05 - 期刊:
- 影响因子:0.800
- 作者:
Gökalp Alpan;Alexander Goncharov - 通讯作者:
Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
- DOI:
10.1007/s00029-018-0393-3 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Goncharov;Guangyu Zhu - 通讯作者:
Guangyu Zhu
Alexander Goncharov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Goncharov', 18)}}的其他基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
- 批准号:
1900743 - 财政年份:2019
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
- 批准号:
1763287 - 财政年份:2018
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
- 批准号:
1564385 - 财政年份:2016
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
- 批准号:
1531583 - 财政年份:2015
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
- 批准号:
1520648 - 财政年份:2015
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
- 批准号:
1128867 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
- 批准号:
1301776 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Pushing the Lower Limit of Thermal Conductivity in Layered Materials
事业:突破层状材料导热率的下限
- 批准号:
1943813 - 财政年份:2020
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Material modifications for Lower Thermal Conductivity Creep Resistant Insulation
材料改性以降低热导率抗蠕变绝缘材料
- 批准号:
526719-2018 - 财政年份:2018
- 资助金额:
$ 30.8万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Material modifications for Lower Thermal Conductivity Creep Resistant Insulation
材料改性以降低热导率抗蠕变绝缘材料
- 批准号:
516068-2017 - 财政年份:2017
- 资助金额:
$ 30.8万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Understanding the solid solution effects of iron on the thermoelasticity and thermal conductivity of the lower mantle minerals
了解铁的固溶体对下地幔矿物的热弹性和导热率的影响
- 批准号:
26287137 - 财政年份:2014
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ab initio phonon models of lattice thermal conductivity of lower mantle minerals
下地幔矿物晶格热导率从头算声子模型
- 批准号:
1346961 - 财政年份:2014
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
CSEDI: Thermal conductivity of lower mantle minerals and heat flow across the core/mantle boundary
CSEDI:下地幔矿物的热导率和穿过核/地幔边界的热流
- 批准号:
0969033 - 财政年份:2010
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
The Thermal Conductivity of Lower Mantle Minerals
下地幔矿物的热导率
- 批准号:
NE/H007636/1 - 财政年份:2010
- 资助金额:
$ 30.8万 - 项目类别:
Research Grant
New thermal barrier coating material with lower thermal conductivity
导热系数更低的新型热障涂层材料
- 批准号:
353304-2007 - 财政年份:2007
- 资助金额:
$ 30.8万 - 项目类别:
University Undergraduate Student Research Awards
RUI: High Temperature Thermal Conductivity Measurements on Lower Crustal and Upper Mantle Xenolith Samples and the Thermal Structure of Continental Lithosphere
RUI:下地壳和上地幔捕虏体样品的高温热导率测量和大陆岩石圈的热结构
- 批准号:
9206347 - 财政年份:1992
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Exploration of the Lower Limit of Thermal Conductivity in Nonmetallic Solids (Materials Research)
非金属固体导热率下限的探索(材料研究)
- 批准号:
8417557 - 财政年份:1985
- 资助金额:
$ 30.8万 - 项目类别:
Continuing grant














{{item.name}}会员




