A Posteriori Error Estimation through Duality and Some Other Topics

通过对偶性和其他一些主题进行后验误差估计

基本信息

  • 批准号:
    1522707
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Self-adaptive numerical methods provide a powerful and automatic approach in scientific computing. In particular, Adaptive Mesh Refinement (AMR) algorithms have been widely used in computational science and engineering and have become a common tool in computer simulations of complex natural science and engineering problems. As identified by the US National Research Council, AMR is one of two necessary tools (AMR and Parallel Computing) for computationally tackling Grand Challenge problems. The key ingredient for success of AMR algorithms is a posteriori error estimates that are able to accurately locate sources of global and local error in the current approximation. Another challenge in computer simulations of complex systems is the reliability of computer predictions. These considerations (efficiency in AMR algorithms and error control) demonstrate the need for an error estimator that can a posteriori be extracted from the computed numerical solution and the given data of the underlying problem. Such an a posteriori error estimate ideally should provide an underlying rigorous mathematical theory for estimating and quantifying discretization error in terms of the error's magnitude and its spatial distribution. Success in this project will allow AMR algorithms to automatically locate physical interfaces, detect layers and discontinuities, and resolve oscillations of various scales. The dual estimators to be developed in this project will resolve the most natural but extremely difficult question of discretization error control on coarse meshes for a class of problems and hence partially guarantee reliability of computer simulations.This research project focuses on the development, analysis, and test of a posteriori error estimators through the methodology of duality. The dual estimators to be developed in this project will have a guaranteed reliability bound with reliability constant being one. Hence, these estimators are perfect for discretization error control and may be used as an accurate stopping criterion for iterative solvers. The methodology of duality may be applied to a large class of problems arising from continuum mechanics including linear and nonlinear problems. Since these estimators will not use a priori knowledge on the locations and characteristics of interface singularities, discontinuities (in the form of shock-like fronts, and of interior and boundary layers), and/or oscillations of various scales (multi-scale phenomena), they may then be applied more readily to highly nonlinear problems and have the potential of being applied to complex systems arising in applications. The emphases and the difficulties of the proposed research are (1) explicit or local construction of an approximation to the dual variable such that the resulting indicator is efficient and robust, and (2) theoretical and numerical confirmation of the efficiency and robustness. Finally, a small portion of the proposed research addresses an open theoretical question on the robustness of estimators for interface problems.
自适应数值方法为科学计算提供了一种强有力的自动化方法。特别是自适应网格细化(AMR)算法在计算科学和工程中得到了广泛的应用,并已成为复杂自然科学和工程问题的计算机模拟中的常用工具。正如美国国家研究理事会所确定的那样,AMR是计算解决大挑战问题的两个必要工具之一(AMR和并行计算)。AMR算法成功的关键因素是后验误差估计,它能够准确地定位当前近似中的全局和局部误差源。计算机模拟复杂系统的另一个挑战是计算机预测的可靠性。这些考虑(AMR算法和误差控制的效率)表明需要一个误差估计,可以从计算的数值解和给定的数据的基本问题的后验提取。理想情况下,这种后验误差估计应该提供一个基本的严格的数学理论,用于估计和量化离散化误差的误差大小和空间分布。该项目的成功将使AMR算法能够自动定位物理界面,检测层和不连续性,并解决各种尺度的振荡。本计画所发展之对偶估计量将解决一类问题在粗网格上离散化误差控制这一最自然但又极为困难的问题,并因此部分地保证计算机模拟的可靠性。本研究计画的重点是透过对偶方法发展、分析及检验后验误差估计量。在这个项目中开发的对偶估计将有一个保证的可靠性界限,可靠性常数为1。因此,这些估计器是完美的离散误差控制,并可用作迭代求解器的精确停止准则。对偶方法可应用于连续介质力学中的一大类问题,包括线性和非线性问题。由于这些估计将不使用先验知识的位置和特性的界面奇点,不连续性(在形式上的冲击波一样的前线,和内部和边界层),和/或振荡的各种尺度(多尺度现象),他们可以更容易地应用到高度非线性问题,并有可能被应用到复杂的系统中出现的应用。研究的重点和难点在于:(1)显式或局部构造对偶变量的近似值,使得所得到的指标是有效的和稳健的;(2)理论和数值验证所得到的指标的有效性和稳健性。最后,一小部分拟议的研究解决了一个开放的理论问题的鲁棒性估计接口问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiqiang Cai其他文献

Multiobjective optimization of reliability-redundancy allocation problems for serial parallel-series systems based on importance measure
基于重要性测度的串并串系统可靠性冗余分配问题多目标优化
A multi-objective reliability optimization for reconfigurable systems considering components degradation
考虑组件退化的可重构系统多目标可靠性优化
DDPG based on multi-scale strokes for financial time series trading strategy
基于多尺度笔划的DDPG金融时间序列交易策略
Internal Usability Testing of Automated Essay Feedback in an Intelligent Writing Tutor
智能写作导师自动论文反馈的内部可用性测试
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rod D. Roscoe;Laura K. Varner;Zhiqiang Cai;Jennifer L. Weston;S. Crossley;D. McNamara
  • 通讯作者:
    D. McNamara
Cognitively Inspired Nlp-based Knowledge Representations: Further Explorations of Latent Semantic Analysis
基于 NLP 的认知启发知识表示:潜在语义分析的进一步探索
  • DOI:
    10.1142/s0218213006003090
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Louwerse;Zhiqiang Cai;Xiangen Hu;M. Ventura;Patrick Jeuniaux
  • 通讯作者:
    Patrick Jeuniaux

Zhiqiang Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhiqiang Cai', 18)}}的其他基金

Adaptive Neural Networks for Partial Differential Equations
偏微分方程的自适应神经网络
  • 批准号:
    2110571
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Efficient, Reliable, and Robust A Posteriori Error Estimators of Recovery Type
高效、可靠、鲁棒的恢复型后验误差估计器
  • 批准号:
    1217081
  • 财政年份:
    2012
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Flux Recovery, A Posteriori Error Estimation, and Adaptive Finite Element Method
通量恢复、后验误差估计和自适应有限元方法
  • 批准号:
    0810855
  • 财政年份:
    2008
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Least-Squares Finite Element Methods for Nonlinear Partial Differential Equations
非线性偏微分方程的最小二乘有限元法
  • 批准号:
    0511430
  • 财政年份:
    2005
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
U.S.-Korea Cooperative Research Program: Numerical methods for the computation of singular solutions and stress intensity factors
美韩合作研究计划:计算奇异解和应力强度因子的数值方法
  • 批准号:
    0139053
  • 财政年份:
    2002
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
U.S.-Germany Cooperative Research: Least-Square Finite Element Methods for Nonlinear Elasticity
美德合作研究:非线性弹性最小二乘有限元方法
  • 批准号:
    9910010
  • 财政年份:
    2000
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
First-Order System Least Squares for Partial Differential Equations
偏微分方程的一阶系统最小二乘法
  • 批准号:
    9619792
  • 财政年份:
    1996
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Accuracy estimation and improvement of surgical navigation system based on error probability distribution and error propagation model
基于误差概率分布和误差传播模型的手术导航系统精度估计与改进
  • 批准号:
    22K12838
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    DGECR-2021-00428
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Launch Supplement
Study on wall stress model and error estimation for practical LES of separated and reattached flow
分离重附流实用LES壁面应力模型及误差估计研究
  • 批准号:
    21K14083
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
  • 批准号:
    21K03811
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of objective wildlife damage area estimation technology, and verification of error conditions between the estimated objective indicators and the subjective damage perceptions
建立客观野生动物受损面积估算技术,并验证估算的客观指标与主观受损感知之间的误差情况
  • 批准号:
    21K14942
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Augmenting the Harmonic Balance Method by Stability Analysis and Error Estimation and its Application to Vibro-Impact Processes
通过稳定性分析和误差估计增强谐波平衡法及其在振动冲击过程中的应用
  • 批准号:
    438529800
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grants
Estimation of cognitive error risk by using neurofeedback driven dynamic functional connectivity
使用神经反馈驱动的动态功能连接估计认知错误风险
  • 批准号:
    19H04025
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an estimation method of error causes in problems for representing learners' understanding of program behavior
开发问题中错误原因的估计方法,以代表学习者对程序行为的理解
  • 批准号:
    19K21782
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了