First-Order System Least Squares for Partial Differential Equations
偏微分方程的一阶系统最小二乘法
基本信息
- 批准号:9619792
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-10-01 至 2000-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9619792 Cai The investigator studies the numerical solution of partial differential equations (including convection-diffusion, Helmholtz, incompressible Stokes and Navier-Stokes, and elasticity equations) by a least-squares formulation for an equivalent first-order system. First-Order System Least Squares (FOSLS) formulates the original problem as an equivalent minimization problem by applying a least-squares principle to an equivalent first-order system. Hence, it represents a general methodology that can produce a variety of algorithms, depending on such choices as the first-order system and the least-squares norm, and that can lead to formulations that have substantially different numerical properties (accuracy, adaptivity, and complexity). The project seeks a proper first-order system and a proper least-squares norm for formulating the original problem so well that the numerical process (discretization and multigrid solution) becomes straightforward and optimal. Certain finite element methods for FOSLS minimization problems for second-order elliptic and incompressible Stokes and Navier-Stokes equations are of optimal accuracy in each variable (including new variables). Standard multigrid methods applied to the resulting discrete equations have optimal complexity (i.e., computational cost for full multigrid solution is proportional to the number of unknowns.). This project continues efforts on problems with discontinuous coefficients, high Reynolds number flows, and linear elasticity with general boundary conditions. This project aims to develop a new computational method for systems of parial differential equations that model the physical phenomena of fluid flow. The approach modifies existing mathematical formulations for these processes, and leads to more efficient and robust computational techniques than those currently in use. These new algorithms enable computer simulations of a large class of problems in science and engineering and mi nimize the need for costly experimental measurements.
小行星9619792 研究人员研究了偏微分方程(包括对流扩散,亥姆霍兹,不可压缩斯托克斯和Navier-Stokes方程和弹性方程)的数值解的最小二乘制定一个等效的一阶系统。 一阶系统最小二乘(FOSLS)通过将最小二乘原理应用于等效的一阶系统,将原始问题表示为等效的最小化问题。 因此,它代表了一种通用的方法,可以产生各种算法,这取决于一阶系统和最小二乘范数等选择,并可能导致配方,具有显着不同的数值属性(准确性,自适应性和复杂性)。 该项目寻求一个适当的一阶系统和一个适当的最小二乘规范制定原来的问题,使数值处理(离散化和多重网格解决方案)变得简单和最佳。 二阶椭圆不可压缩Stokes方程和Navier-Stokes方程的FOSLS极小化问题的某些有限元方法在每个变量(包括新变量)上都具有最佳精度。 应用于所得离散方程的标准多重网格方法具有最佳复杂性(即,完全多重网格解的计算成本与未知数的数量成比例。 本计画将继续研究不连续系数、高雷诺数流动、一般边界条件下的线弹性问题。 本计画旨在发展一种新的计算方法,以模拟流体流动的物理现象。 该方法修改了这些过程的现有数学公式,并导致比目前使用的更有效和更强大的计算技术。 这些新的算法使计算机模拟的一大类问题,在科学和工程,并最大限度地减少了昂贵的实验测量的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiqiang Cai其他文献
Multiobjective optimization of reliability-redundancy allocation problems for serial parallel-series systems based on importance measure
基于重要性测度的串并串系统可靠性冗余分配问题多目标优化
- DOI:
10.1177/1748006x19844785 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jiangbin Zhao;Shubin Si;Zhiqiang Cai;Ming Su;Wei Wang - 通讯作者:
Wei Wang
A multi-objective reliability optimization for reconfigurable systems considering components degradation
考虑组件退化的可重构系统多目标可靠性优化
- DOI:
10.1016/j.ress.2018.11.001 - 发表时间:
2019-03 - 期刊:
- 影响因子:8.1
- 作者:
Jiangbin Zhao;Shubin Si;Zhiqiang Cai - 通讯作者:
Zhiqiang Cai
DDPG based on multi-scale strokes for financial time series trading strategy
基于多尺度笔划的DDPG金融时间序列交易策略
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jun;Cong Chen;L. Duan;Zhiqiang Cai - 通讯作者:
Zhiqiang Cai
Internal Usability Testing of Automated Essay Feedback in an Intelligent Writing Tutor
智能写作导师自动论文反馈的内部可用性测试
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Rod D. Roscoe;Laura K. Varner;Zhiqiang Cai;Jennifer L. Weston;S. Crossley;D. McNamara - 通讯作者:
D. McNamara
Cognitively Inspired Nlp-based Knowledge Representations: Further Explorations of Latent Semantic Analysis
基于 NLP 的认知启发知识表示:潜在语义分析的进一步探索
- DOI:
10.1142/s0218213006003090 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
M. Louwerse;Zhiqiang Cai;Xiangen Hu;M. Ventura;Patrick Jeuniaux - 通讯作者:
Patrick Jeuniaux
Zhiqiang Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiqiang Cai', 18)}}的其他基金
Adaptive Neural Networks for Partial Differential Equations
偏微分方程的自适应神经网络
- 批准号:
2110571 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Posteriori Error Estimation through Duality and Some Other Topics
通过对偶性和其他一些主题进行后验误差估计
- 批准号:
1522707 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Efficient, Reliable, and Robust A Posteriori Error Estimators of Recovery Type
高效、可靠、鲁棒的恢复型后验误差估计器
- 批准号:
1217081 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Flux Recovery, A Posteriori Error Estimation, and Adaptive Finite Element Method
通量恢复、后验误差估计和自适应有限元方法
- 批准号:
0810855 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Least-Squares Finite Element Methods for Nonlinear Partial Differential Equations
非线性偏微分方程的最小二乘有限元法
- 批准号:
0511430 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research Program: Numerical methods for the computation of singular solutions and stress intensity factors
美韩合作研究计划:计算奇异解和应力强度因子的数值方法
- 批准号:
0139053 - 财政年份:2002
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Least-Square Finite Element Methods for Nonlinear Elasticity
美德合作研究:非线性弹性最小二乘有限元方法
- 批准号:
9910010 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Fundamental and applied research on dynamic polymer brush system floating on water with high-order responsiveness
高阶响应漂浮于水面的动态聚合物刷系统基础与应用研究
- 批准号:
22KJ0790 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Control System Design Using Full-Order Control Law and Data Analysis for Fluid Fields
使用全阶控制律的控制系统设计和流场数据分析
- 批准号:
23K13348 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and highly selective proton MRSI on a clinical 3 T system using a second order gradient insert, for application in schizophrenia
使用二阶梯度插入的临床 3 T 系统上的鲁棒性和高选择性质子 MRSI,用于精神分裂症的应用
- 批准号:
10741355 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Development of production system using machine learning method for the made-to-order 3D design by linguistic expression
使用机器学习方法开发生产系统,通过语言表达进行定制 3D 设计
- 批准号:
22H00956 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Next generation biofabrication system for bottom-up processing of novel sheet-like biomaterials into higher-order patient specific tissue structures
下一代生物制造系统,用于将新型片状生物材料自下而上加工成更高阶的患者特异性组织结构
- 批准号:
569315-2022 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Postgraduate Scholarships - Doctoral
The Establishment of the "San Francisco Peace Treaty System": the Postwar International Order in the Asia Pacific Region
“旧金山和约体系”的建立:战后亚太地区国际秩序
- 批准号:
22K01369 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of made-to-order sugar-chain-sensing-system
定制糖链传感系统的开发
- 批准号:
22K18350 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Higher-order tactile measurement system with consideration of tactile individuality
考虑触觉个性的高阶触觉测量系统
- 批准号:
22H01437 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
First-Order Method-Based Optimization for Dynamical System Control and Its Engineering Applications
基于一阶方法的动力系统控制优化及其工程应用
- 批准号:
22K14279 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of robust non-contact heart rate detection system using high order statistics to interference
利用高阶统计干扰开发稳健的非接触式心率检测系统
- 批准号:
21K04094 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)