Least-Squares Finite Element Methods for Nonlinear Partial Differential Equations
非线性偏微分方程的最小二乘有限元法
基本信息
- 批准号:0511430
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is the development and analysis of least-squaresmethods for partial differential equations (PDEs) arising from applicationsin fluid and solid mechanics. These systems are naturally nonlinear andnumerical simulation is typically difficult and expensive. Theleast-squares finite element method is a powerful tool for many PDE-basedapplications in science and engineering. One of the main characteristicsof a least-squares formulation is that it transforms a given set ofequations into a loosely coupled system of scalar equations that can betreated easily by multilevel finite element methods. The finite elementspaces for the individual unknowns may be chosen independently, based onsimplicity and availability or from the physics of the underlying problem.The linear systems of equations resulting from well-posed least-squaresdiscretizations are always self-adjoint and positive definite, andvariational multigrid methods generally provide a robust, scalable solver.In addition, the associated functional itself provides a natural sharplocal error estimator, which can be used for effective adaptive meshrefinement. Coupling nested iteration and Newton linearization with aleast-squares discretization and multigrid iterative solver constitutes arobust, comprehensive solution strategy for difficult nonlinear problems.This project represents a focused study of least-squares methods forseveral linear and nonlinear elasticity and fluid flow problems, extendingto applications in viscoelasticity. Some research in these areas has beensuccessful and preliminary results are encouraging, but much remains to bedone. This project includes both general solution methodologies forproblems with strong nonlinearities and specific least-squares formulationsfor models that have not been analyzed in a least-squares framework. Theapplications considered in this project include complex and specializedsystems important in areas including engineering, physics, aerodynamics,atmospheric sciences, geology, and biomechanics. One target application,for example, is a specific incompressible, non-Newtonain flow which arisesin the modeling of blood flow. Here, a viscoelastic model that takes intoaccount the elastic nature of the suspended red blood cells is to beconsidered. In these and many other areas of interest, computer simulationof complex phenomena are currently limited by efficiency of numericalmethods. The basic techniques developed here will enhance the broader areaof scientific computation by adding to the collective understanding of howto analyze and solve complex problems.
这个项目的目标是发展和分析偏微分方程(PDE)的最小二乘方法,这些偏微分方程是在流体和固体力学中应用的。 这些系统是自然非线性和数值模拟是典型的困难和昂贵的。 最小二乘有限元法是科学和工程中许多基于偏微分方程的应用的有力工具。 最小二乘公式的一个主要特点是它将一组给定的方程转换成一个松散耦合的标量方程系统,可以很容易地用多层有限元方法处理。 基于简单性和可用性,或者从基本问题的物理学出发,可以独立地选择各个未知量的有限元空间。由适定的最小二乘离散化产生的线性方程组总是自伴和正定的,并且变分多重网格方法通常提供了一个鲁棒的、可扩展的求解器。此外,相关的泛函本身提供了一个自然的尖锐局部误差估计器,其可用于有效的自适应网格细化。 将嵌套迭代和牛顿线性化与最小二乘离散和多重网格迭代求解器相结合,构成了解决复杂非线性问题的一种快速、全面的求解策略,本项目重点研究了几种线性和非线性弹性和流体流动问题的最小二乘方法,并将其应用扩展到粘弹性问题。 这些领域的一些研究已经取得了成功,初步结果令人鼓舞,但仍有许多工作要做。 这个项目包括两个一般的解决方法与强非线性问题和具体的最小二乘公式的模型,还没有被分析在最小二乘框架。 在这个项目中考虑的应用程序包括复杂和专业的系统,包括工程,物理,空气动力学,大气科学,地质学和生物力学领域的重要性。 一个目标应用,例如,是一个特定的不可压缩的,非牛顿流,这有助于血液流动的建模。在这里,考虑到悬浮的红细胞的弹性性质的粘弹性模型是被考虑。 在这些和许多其他感兴趣的领域,复杂现象的计算机模拟目前受到数值方法效率的限制。 这里开发的基本技术将通过增加对如何分析和解决复杂问题的集体理解来增强更广泛的科学计算领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiqiang Cai其他文献
Multiobjective optimization of reliability-redundancy allocation problems for serial parallel-series systems based on importance measure
基于重要性测度的串并串系统可靠性冗余分配问题多目标优化
- DOI:
10.1177/1748006x19844785 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jiangbin Zhao;Shubin Si;Zhiqiang Cai;Ming Su;Wei Wang - 通讯作者:
Wei Wang
A multi-objective reliability optimization for reconfigurable systems considering components degradation
考虑组件退化的可重构系统多目标可靠性优化
- DOI:
10.1016/j.ress.2018.11.001 - 发表时间:
2019-03 - 期刊:
- 影响因子:8.1
- 作者:
Jiangbin Zhao;Shubin Si;Zhiqiang Cai - 通讯作者:
Zhiqiang Cai
DDPG based on multi-scale strokes for financial time series trading strategy
基于多尺度笔划的DDPG金融时间序列交易策略
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jun;Cong Chen;L. Duan;Zhiqiang Cai - 通讯作者:
Zhiqiang Cai
Internal Usability Testing of Automated Essay Feedback in an Intelligent Writing Tutor
智能写作导师自动论文反馈的内部可用性测试
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Rod D. Roscoe;Laura K. Varner;Zhiqiang Cai;Jennifer L. Weston;S. Crossley;D. McNamara - 通讯作者:
D. McNamara
Cognitively Inspired Nlp-based Knowledge Representations: Further Explorations of Latent Semantic Analysis
基于 NLP 的认知启发知识表示:潜在语义分析的进一步探索
- DOI:
10.1142/s0218213006003090 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
M. Louwerse;Zhiqiang Cai;Xiangen Hu;M. Ventura;Patrick Jeuniaux - 通讯作者:
Patrick Jeuniaux
Zhiqiang Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiqiang Cai', 18)}}的其他基金
Adaptive Neural Networks for Partial Differential Equations
偏微分方程的自适应神经网络
- 批准号:
2110571 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
A Posteriori Error Estimation through Duality and Some Other Topics
通过对偶性和其他一些主题进行后验误差估计
- 批准号:
1522707 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Efficient, Reliable, and Robust A Posteriori Error Estimators of Recovery Type
高效、可靠、鲁棒的恢复型后验误差估计器
- 批准号:
1217081 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Flux Recovery, A Posteriori Error Estimation, and Adaptive Finite Element Method
通量恢复、后验误差估计和自适应有限元方法
- 批准号:
0810855 - 财政年份:2008
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Research Program: Numerical methods for the computation of singular solutions and stress intensity factors
美韩合作研究计划:计算奇异解和应力强度因子的数值方法
- 批准号:
0139053 - 财政年份:2002
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Least-Square Finite Element Methods for Nonlinear Elasticity
美德合作研究:非线性弹性最小二乘有限元方法
- 批准号:
9910010 - 财政年份:2000
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
First-Order System Least Squares for Partial Differential Equations
偏微分方程的一阶系统最小二乘法
- 批准号:
9619792 - 财政年份:1996
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
相似海外基金
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
First-order system least squares finite elements for finite elasto-plasticity
有限弹塑性的一阶系统最小二乘有限元
- 批准号:
255798245 - 财政年份:2014
- 资助金额:
$ 11万 - 项目类别:
Priority Programmes
CDS&E: Collaborative Research: Least-Squares Finite Element Methods for Data Assimilation in Large-Scale Simulations
CDS
- 批准号:
1249950 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Least-Squares Finite Element Methods for Data Assimilation in Large-Scale Simulations
CDS
- 批准号:
1249858 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
RUI: Investigation of Discontinuous Galerkin Least-Squares Finite Element Methods for Singularly Perturbed Problems
RUI:奇异摄动问题的不连续伽辽金最小二乘有限元方法研究
- 批准号:
1217268 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
RUI: Adaptively Weighted Finite Element Methods for PDEs and Optimal Least-Squares Metrics
RUI:偏微分方程和最优最小二乘度量的自适应加权有限元方法
- 批准号:
1216297 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Gemischte Least-Squares Finite Elemente für geometrisch nichtlineare Probleme der Festkörpermechanik
固体力学中几何非线性问题的混合最小二乘有限元
- 批准号:
211302948 - 财政年份:2011
- 资助金额:
$ 11万 - 项目类别:
Research Grants
CAREER: Multilevel Discontinuous Least-Squares Finite Element Methods
职业:多级不连续最小二乘有限元方法
- 批准号:
0746676 - 财政年份:2008
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Collaborative Research: The Least-Squares Meshfree Particle Finite Element Method
合作研究:最小二乘无网格粒子有限元法
- 批准号:
0310609 - 财政年份:2003
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Collaborative Research: The Least-Squares Meshfree Particle Finite Element
合作研究:最小二乘无网格粒子有限元
- 批准号:
0310492 - 财政年份:2003
- 资助金额:
$ 11万 - 项目类别:
Standard Grant