Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
基本信息
- 批准号:1522828
- 负责人:
- 金额:$ 3.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to investigate problems lying at the shared boundaries of arithmetic geometry (especially p-adic aspects), algebraic geometry, and commutative algebra. For example, Mel Hochster's direct summand conjecture, which posits the existence of some fundamental properties of regular rings, has been an important open problem in commutative algebra for over four decades; the solution to the equal characteristic case (due to Hochster from the 70s) is responsible for large swathes of modern commutative algebra, while the p-adic case remains tantalizingly open. The PI recently discovered that some ideas from p-adic Hodge theory (due to Faltings) can be used solve certain unknown cases of this conjecture. The PI intends to pursue this direction further by using powerful recent techniques --- chiefly Scholze's beautiful theory of perfectoid spaces --- from the fast evolving subject of p-adic Hodge theory to approach the direct summand conjecture and other purely algebraic problems. Conversely, previous work of the PI on the direct summand conjecture, coupled with some derived algebraic geometry, has recently proven instrumental in arriving at a significant simplification of certain geometric aspects of p-adic Hodge theory; the PI plans to develop the derived aspects more thoroughly to conceptualize the picture better.The study of solutions of polynomials with integer coefficients dates back to antiquity. An extremely useful technique here is to study "approximate" solutions first, i.e., solutions modulo primes, and then modulo powers of primes. The idea is that as the power of prime increases, the approximation becomes better. Grothendieck's revolutionization of mathematics in the last half century not only allows one to not only attach a precise meaning to the previous statement, but also provides a beautiful geometric context --- the world of p-adic geometry ---- to study such approximate solutions. This context has been at the heart of numerous recent advances in mathematics (such as Wiles' proof of Fermat's last theorem and other recent milestones in the Langlands program). The PI plans to contribute further to underlying geometric theory as well as develop applications to purely algebraic problems.
PI建议研究算术几何(特别是p-adic方面),代数几何和交换代数的共享边界问题。例如,梅尔·霍克斯特的直和项猜想,它假定了正则环的一些基本性质的存在,在过去的四十年里一直是交换代数中一个重要的开放问题;相等特征情形的解决方案(由于霍克斯特从70年代开始)负责大量的现代交换代数,而p-adic情形仍然是诱人的开放。PI最近发现,p-adic Hodge理论(由于Faltings)的一些想法可以用来解决这个猜想的某些未知情况。PI打算进一步追求这一方向,通过使用强大的最近的技术-主要是Scholze的美丽理论perfectoid空间-从快速发展的主题p进霍奇理论,以接近直接和项猜想和其他纯粹的代数问题。相反,以前的工作PI的直接和项猜想,再加上一些派生的代数几何,最近已被证明有助于达到一个显着的简化某些几何方面的p进霍奇理论; PI计划发展派生方面更彻底地概念化图片更好。研究解决方案的多项式与整数系数可以追溯到古代。这里一个非常有用的技术是首先研究“近似”解,即,解模素数,然后模素数的幂。这个想法是,随着素数的幂的增加,近似变得更好。Grothendieck在后半个世纪的数学革命不仅使人们不仅可以为前面的陈述赋予精确的含义,而且还提供了一个美丽的几何背景--p-adic几何的世界--来研究这种近似解。这一背景一直是数学中许多最新进展的核心(例如怀尔斯对费马大定理的证明和朗兰兹纲领中的其他里程碑)。PI计划进一步为基础几何理论做出贡献,并开发纯代数问题的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhargav Bhatt其他文献
Complex Rings, Quaternion Rings and Octonion Rings
复环、四元环和八元环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto and Yusuke Nakajima;菊政勲 - 通讯作者:
菊政勲
General hyperplane sections of canonical 3-folds in positive characteristic
正特征正则三折的一般超平面截面
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
F-singularities and weak ordinarity conjecture
F-奇点和弱平凡猜想
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
n-canonical modules over non-commutative algebras
非交换代数上的 n 规范模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto - 通讯作者:
Mitsuyasu Hashimoto
Stable rationality of orbifold Fano 3-fold hypersurfaces
Orbifold Fano 3 重超曲面的稳定合理性
- DOI:
10.1090/jag/712 - 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi;Takuzo Okada - 通讯作者:
Takuzo Okada
Bhargav Bhatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhargav Bhatt', 18)}}的其他基金
Algebraic Geometry Close to Characteristic p
代数几何接近特征p
- 批准号:
1801689 - 财政年份:2018
- 资助金额:
$ 3.84万 - 项目类别:
Continuing Grant
Algebraic Geometry Approaching Characteristic p
代数几何逼近特征p
- 批准号:
1501461 - 财政年份:2015
- 资助金额:
$ 3.84万 - 项目类别:
Continuing Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1340424 - 财政年份:2013
- 资助金额:
$ 3.84万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1160914 - 财政年份:2012
- 资助金额:
$ 3.84万 - 项目类别:
Standard Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 3.84万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 3.84万 - 项目类别:
Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
- 批准号:
2882198 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
- 批准号:
NE/X014975/1 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 3.84万 - 项目类别:
Continuing Grant