Algebraic Geometry Close to Characteristic p

代数几何接近特征p

基本信息

项目摘要

This project supports research in algebraic geometry (which studies solutions to systems of polynomial equations in many variables). This subject is thousands of years old, and provides a systematic language for translating statements in geometry (such as "a doughnut is more curved than a ball") to those in algebra (such as "an elliptic function field is not rational"). A dominant theme of this project is to use this dictionary to better understand the variation in the geometric structure of a solution set of a certain system of equations as one perturbs the coefficients of the defining equations, especially in an arithmetic sense (i.e., in passing from usual arithmetic to modular or ``clockwork'' arithmetic). A better understanding of the geometric structure of solution sets of equations in modular arithmetic is fundamental to many applications of mathematics. The PI shall study the interaction between techniques coming from number theory (such as cohomology theories in p-adic Hodge theory) and algebraic topology (such as topological Hochschild homology) in the context of algebraic varieties over a p-adic field. A deep relationship between the two is expected: they should be related in the same way that motivic cohomology and algebraic K-theory are related (i.e., via an Atiyah-Hirzebruch type spectral sequence). The PI shall also use tools coming from number theory and p-adic geometry (such as perfectoid geometry) to approach problems in commutative algebra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目支持代数几何的研究(研究多变量多项式方程组的解)。这门学科已经有数千年的历史了,它提供了一种系统的语言,用于将几何中的语句(如“一个甜甜圈比一个球更弯曲”)翻译成代数中的那些语句(如“椭圆函数域不是有理的”)。这个项目的一个主要主题是使用这本词典来更好地理解当一个人扰动定义方程的系数时,某一方程组的解集的几何结构的变化,特别是在算术意义上(即从通常的算术到模算术或‘发条’算术)。更好地理解模算术中方程解集的几何结构是许多数学应用的基础。PI应研究来自数论的技术(如p-adic Hodge理论中的上同调理论)和代数拓扑(如p-adady域上的代数簇)之间的相互作用。这两者之间应该有很深的关系:它们应该像基序上同调和代数K-理论一样相关(即通过Atiyah-Hirzebruch型谱序列)。PI还应使用来自数论和p进几何的工具来处理交换代数中的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prisms and prismatic cohomology
  • DOI:
    10.4007/annals.2022.196.3.5
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    B. Bhatt;P. Scholze
  • 通讯作者:
    B. Bhatt;P. Scholze
The six functors for Zariski-constructible sheaves in rigid geometry
刚性几何中 Zariski 可构造滑轮的六个函子
  • DOI:
    10.1112/s0010437x22007291
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bhatt, Bhargav;Hansen, David
  • 通讯作者:
    Hansen, David
Prismatic $F$-crystals and crystalline Galois representations
  • DOI:
    10.4310/cjm.2023.v11.n2.a3
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    B. Bhatt;P. Scholze
  • 通讯作者:
    B. Bhatt;P. Scholze
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhargav Bhatt其他文献

Complex Rings, Quaternion Rings and Octonion Rings
复环、四元环和八元环
General hyperplane sections of canonical 3-folds in positive characteristic
正特征正则三折的一般超平面截面
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi
  • 通讯作者:
    Shunsuke Takagi
F-singularities and weak ordinarity conjecture
F-奇点和弱平凡猜想
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi
  • 通讯作者:
    Shunsuke Takagi
n-canonical modules over non-commutative algebras
非交换代数上的 n 规范模
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto
  • 通讯作者:
    Mitsuyasu Hashimoto
Stable rationality of orbifold Fano 3-fold hypersurfaces
Orbifold Fano 3 重超曲面的稳定合理性
  • DOI:
    10.1090/jag/712
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi;Takuzo Okada
  • 通讯作者:
    Takuzo Okada

Bhargav Bhatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhargav Bhatt', 18)}}的其他基金

Arithmetic and Algebraic Geometry
算术和代数几何
  • 批准号:
    1901286
  • 财政年份:
    2019
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Algebraic Geometry Approaching Characteristic p
代数几何逼近特征p
  • 批准号:
    1501461
  • 财政年份:
    2015
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Continuing Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
  • 批准号:
    1522828
  • 财政年份:
    2014
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
  • 批准号:
    1340424
  • 财政年份:
    2013
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
  • 批准号:
    1160914
  • 财政年份:
    2012
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了