Algebraic Geometry Approaching Characteristic p
代数几何逼近特征p
基本信息
- 批准号:1501461
- 负责人:
- 金额:$ 28.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will contribute to algebraic geometry (the study of solutions of polynomial equations in several variables). Algebraic geometry is fundamental to many applications of mathematics -- such as those to physics, computer science and, more recently, biology -- and was already studied in the work of the ancient Greeks, if not earlier. However, the subject experienced a spectacular revival in the recent past, thanks largely to the work of Alexander Grothendieck and his collaborators. One of the major insights gained from this work was that the study of "approximate" solutions (in the sense of modular or "clockwork" arithmetic) to polynomial equations sheds quite a bit of light on the "true" solutions. In this project, the investigator will expand the techniques available to study "approximate" solutions, and contribute to bridging the gap between "approximate" and "true" solutions. The goal of this project is to study algebraic geometry in the positive characteristic and p-adic settings. First, with Morrow and Scholze, the PI intends to give an algebro-geometric construction of Breuil-Kisin modules (or p-adic shtukas) associated to p-adic manifolds; this may be viewed as a p-adic analogue of the association of a Hodge structure to a complex manifold, and would have new consequences for the cohomology of algebraic varieties. Secondly, with Scholze, the PI plans to study algebraic geometry over perfect schemes, and its relation to the h-topology; the sought-for descent result for vector bundles would be used to construct determinant line bundles for certain complexes of sheaves that are not linear over the structure sheaf, which will give a new source of algebraic cycles. Finally, with Esnault and Kindler, the PI will work on extensions of Gieseker conjecture (relating fundamental groups to D-modules in characteristic p) and the Grothendieck conjecture (relating stratifying cohomology with the perfection of coherent cohomology). The central theme running through all these projects is the systematic use of "large" objects (such as the pro-etale and h- topologies, perfect and derived schemes) to study "small" objects (such as torsion in cohomology, or line bundles on Grassmanians).
这个研究项目将有助于代数几何(研究多变量多项式方程的解)。代数几何是数学的许多应用的基础--如物理学、计算机科学和最近的生物学--并且在古希腊人的工作中已经研究过,如果不是更早的话。然而,这一主题在最近经历了一次壮观的复兴,这主要归功于亚历山大格罗滕迪克和他的合作者的工作。从这项工作中获得的主要见解之一是,对多项式方程的“近似”解(在模块或“发条”算术的意义上)的研究揭示了“真实”解的相当多的光。在这个项目中,研究人员将扩大技术可用于研究“近似”的解决方案,并有助于弥合“近似”和“真正”的解决方案之间的差距差距。本计画的目标是研究正特征及p-adic设定下的代数几何。首先,与Morrow和Scholze一起,PI打算给出与p-adic流形相关联的Breuil-Kisin模(或p-adic shtukas)的代数几何构造;这可以被视为Hodge结构与复流形相关联的p-adic模拟,并将对代数簇的上同调产生新的影响。其次,与Scholze一起,PI计划研究完美方案上的代数几何,以及它与h-拓扑的关系;向量丛的下降结果将用于构造某些在结构层上不是线性的层的复形的行列式线丛,这将给出代数圈的新来源。最后,PI将与Esnault和Kindler一起研究Gieseker猜想(将基本群与特征p中的D-模联系起来)和Grothendieck猜想(将分层上同调与相干上同调的完善联系起来)的扩展。贯穿所有这些项目的中心主题是系统地使用“大”对象(如pro-etale和h-拓扑,完美和衍生计划)来研究“小”对象(如上同调的挠,或Grassmanians上的线丛)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhargav Bhatt其他文献
Complex Rings, Quaternion Rings and Octonion Rings
复环、四元环和八元环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto and Yusuke Nakajima;菊政勲 - 通讯作者:
菊政勲
General hyperplane sections of canonical 3-folds in positive characteristic
正特征正则三折的一般超平面截面
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
F-singularities and weak ordinarity conjecture
F-奇点和弱平凡猜想
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
n-canonical modules over non-commutative algebras
非交换代数上的 n 规范模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto - 通讯作者:
Mitsuyasu Hashimoto
Stable rationality of orbifold Fano 3-fold hypersurfaces
Orbifold Fano 3 重超曲面的稳定合理性
- DOI:
10.1090/jag/712 - 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi;Takuzo Okada - 通讯作者:
Takuzo Okada
Bhargav Bhatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhargav Bhatt', 18)}}的其他基金
Algebraic Geometry Close to Characteristic p
代数几何接近特征p
- 批准号:
1801689 - 财政年份:2018
- 资助金额:
$ 28.48万 - 项目类别:
Continuing Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1522828 - 财政年份:2014
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1340424 - 财政年份:2013
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1160914 - 财政年份:2012
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 28.48万 - 项目类别:
Continuing Grant