NRI: Real Time Observation, Inference and Intervention of Co-Robot Systems Towards Individually Customized Performance Feedback Based on Students' Affective States

NRI:协作机器人系统的实时观察、推理和干预,以实现基于学生情感状态的个性化定制表现反馈

基本信息

  • 批准号:
    1527148
  • 负责人:
  • 金额:
    $ 34.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This NSF National Robotics Initiative project will investigate the potential of a cycle of observation, inference and intervention by co-robot systems to enhance students' affective states and improve their performance on engineering laboratory tasks. Co-robots are robots that work side-by-side with humans, assisting them and adapting to their needs. The two-way exchange of knowledge between students and co-robots creates a reciprocal relationship, in which each party learns from the other in service of a common goal. Affective states, such as frustration and engagement, play a major role in students' performance on everyday learning tasks. A student who is overly stressed or distracted may commit errors that would be otherwise easy to avoid. A co-robot system that is cognizant of students' affective states can intervene to prevent these errors. The results of this project may provide a template for skill-based instruction on topics well beyond engineering. Currently, such learning requires extensive interactions between a student and an instructor, with the instructor providing intensive feedback at all times. In many cases, personality mismatches or other issues between instructor and student can lead to frustration, learning difficulties, and eventual dropout. Furthermore, one-on-one learning is limited by scalability challenges, as an increase in the number of students, without a proportional increase in trained instructors, can result in decreases in quality and quantity of instructor time allocated to each student. Co-robot learning systems will be able to mitigate these challenges by providing both real time and scalable feedback systems that adapt to the individual needs of students and help to minimize the amount of human instructor time required by each student. This research will acquire facial, auditory, and body gesture data from students using the integrated visual, audio and depth sensory system of the co-robot. The system will make statistical inferences of students' affective states, based on machine learning classification of facial and body language data. Visual feedback will be used to present students with interventions (visual instructions and commentary) intended to enhance their affective state and improve their performance on laboratory tasks. The project will assess the impact of co-robots' ability to improve students' affective states and enhance students' performance on laboratory tasks over repeated iterations of learning and testing. This project will lead to a better understanding of how students interact and function during potentially stressful laboratory activities. The co-robot systems proposed in this work will help discover the correlations that exists between students' affect and task performance. Co-robots will actively adapt to the manner in which students learn complex engineering tasks and the affective states that accompany that learning. Co-robot systems that predict the effectiveness of specific intervention strategies for each student and situation will lead to individually-tailored student feedback that serves both students and instructors towards enhancing student performance over time. This proposal advances the impact of co-robots into educational research and practice and extends knowledge of how to succinctly represent the complexities of human behavior in digital form.
这个NSF国家机器人计划项目将研究协作机器人系统的观察、推理和干预循环的潜力,以增强学生的情感状态,提高他们在工程实验室任务中的表现。协作机器人是指与人类并肩工作、协助人类并适应人类需求的机器人。学生和协作机器人之间的双向知识交流创造了一种互惠关系,在这种关系中,每一方都为了共同的目标向对方学习。情感状态,如沮丧和投入,在学生的日常学习任务中发挥着重要作用。压力过大或注意力不集中的学生可能会犯一些本来很容易避免的错误。一个能够识别学生情感状态的协作机器人系统可以干预以防止这些错误。这个项目的结果可能会提供一个模板,以技能为基础的指导主题远远超出工程。目前,这种学习需要学生和教师之间广泛的互动,教师随时提供密集的反馈。在许多情况下,教师和学生之间的性格不匹配或其他问题可能导致挫折,学习困难,最终辍学。此外,一对一的学习受到可扩展性挑战的限制,因为学生数量的增加,而没有训练有素的教师的比例增加,可能导致分配给每个学生的教师时间的质量和数量的下降。协作机器人学习系统将能够通过提供实时和可扩展的反馈系统来缓解这些挑战,这些反馈系统可以适应学生的个性化需求,并有助于最大限度地减少每个学生所需的人工指导时间。这项研究将利用协作机器人的集成视觉、音频和深度感知系统,从学生身上获取面部、听觉和身体手势数据。该系统将基于面部和肢体语言数据的机器学习分类,对学生的情感状态进行统计推断。视觉反馈将用于向学生展示干预措施(视觉指导和评论),旨在增强他们的情感状态,提高他们在实验室任务中的表现。该项目将评估协作机器人改善学生情感状态的能力,并通过反复的学习和测试提高学生在实验室任务中的表现。这个项目将有助于更好地了解学生在潜在压力的实验室活动中如何互动和发挥作用。在这项工作中提出的协作机器人系统将有助于发现学生的情感和任务绩效之间存在的相关性。协作机器人将积极适应学生学习复杂工程任务的方式以及伴随学习的情感状态。协作机器人系统预测每个学生和情况的具体干预策略的有效性,将导致个性化的学生反馈,为学生和教师提供服务,以提高学生的表现。该提案推进了协作机器人对教育研究和实践的影响,并扩展了如何以数字形式简洁地表示人类行为复杂性的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Conrad Tucker其他文献

Probabilistic Graph Networks for Learning Physics Simulations
用于学习物理模拟的概率图网络
  • DOI:
    10.1016/j.jcp.2024.113137
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Sakthi Kumar Arul Prakash;Conrad Tucker
  • 通讯作者:
    Conrad Tucker
Machine learning for real-time detection of local heat accumulation in metal additive manufacturing
用于实时检测金属增材制造中局部热量积累的机器学习
  • DOI:
    10.1016/j.matdes.2024.112933
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Guirguis;Conrad Tucker;Jack Beuth
  • 通讯作者:
    Jack Beuth
Culturally competent social robots target inclusion in Africa
具有文化能力的社交机器人致力于融入非洲
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Adedayo Akinade;Yohannes Haile;Natasha Mutangana;Conrad Tucker;David Vernon
  • 通讯作者:
    David Vernon
AdditiveGDL: generative deep learning for predicting local thermal distributions in metal 3D-printed layers
  • DOI:
    10.1007/s10845-025-02640-2
  • 发表时间:
    2025-07-10
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    David Guirguis;Conrad Tucker;Jack Beuth
  • 通讯作者:
    Jack Beuth
The Role of User-Agent Interactions on Mobile Money Practices in Kenya and Tanzania
用户代理交互对肯尼亚和坦桑尼亚移动货币实践的作用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen Sowon;Edith Luhanga;L. Cranor;Giulia Fanti;Conrad Tucker;Assane Gueye
  • 通讯作者:
    Assane Gueye

Conrad Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Conrad Tucker', 18)}}的其他基金

Collaborative Research: Adaptable Game-based, Interactive Learning Environments for STEM Education (AGILE STEM)
协作研究:适用于 STEM 教育的适应性强、基于游戏的交互式学习环境 (AGILE STEM)
  • 批准号:
    2302814
  • 财政年份:
    2023
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Safeguarding STEM Education and Scientific Knowledge in the Age of Hyper-Realistic Data Generated Using Artificial Intelligence
合作研究:EAGER:SaTC-EDU:在人工智能生成的超现实数据时代保护 STEM 教育和科学知识
  • 批准号:
    2039613
  • 财政年份:
    2020
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Workshop on Artificial Intelligence and the Future of STEM and Societies
人工智能与 STEM 和社会的未来研讨会
  • 批准号:
    1941782
  • 财政年份:
    2019
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
Investigating the Impact of Co-Learning Systems in Providing Customized, Real-Time Student Feedback
调查共同学习系统在提供定制的实时学生反馈方面的影响
  • 批准号:
    1449650
  • 财政年份:
    2014
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
I/UCRC for Center for Healthcare Organization Transformation
I/UCRC 医疗保健组织转型中心
  • 批准号:
    1067885
  • 财政年份:
    2011
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0714165
  • 财政年份:
    2007
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Fellowship

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Studentship
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    EU-Funded
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Standard Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 34.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了