NRI: Robust Stochastic Control for Agile Aerial Manipulation
NRI:敏捷空中操纵的鲁棒随机控制
基本信息
- 批准号:1527432
- 负责人:
- 金额:$ 49.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A new class of flying robots are beginning to, not only navigate and observe, their surroundings, but also reach and manipulate objects in places that are difficult for humans to go. Such systems will assist people through manipulation in unsafe or remote locations, and will automate manual labor-intensive tasks such as package delivery, agricultural inspection, and infrastructure repair. Current aerial manipulator prototypes lack the control fidelity to ensure reliability and efficiency that is expected from such operations. To overcome these limitations, the proposed project develops novel control techniques that exploit the capabilities of the aerial vehicle. If successful, this research project will enable agile and safe aerial manipulation in extreme environments that is presently impossible or infeasible using standard methods. The goal of this research is the realization of planning and control methods with built-in robustness for robots that can interact with and manipulate the environment in autonomous and human-assisted modes. This is accomplished by posing the coupled perception-control problem as a statistical learning problem and adaptively computing decision policies to optimize future performance and minimize probability of safety violation. At the core of the approach lies a provably-stable adaptive control methodology equipped with probabilistic robustness guarantees in terms of maximum expected cost and probability of collision. These bounds correspond to concentration-of-measure inequalities derived through Bayesian probably-approximately-correct analysis. Two experimental platforms provide proof-of-concept for: 1) an autonomous "Air-gripper" for repetitive tasks such as load delivery, crop sampling, and remote cleaning; 2) co-robotic "hands in the sky" in direct assistance to a human operator enabling access to dangerous or difficult-to-access places, e.g. for inspection and repair in extreme environments, during rescue or security-sensitive missions. The implemented techniques are generally applicable and will be released as open-source ROS-compatible software.
一种新型的飞行机器人开始不仅导航和观察它们的周围环境,而且还可以在人类难以到达的地方接触和操纵物体。这样的系统将帮助人们在不安全或偏远的地点进行操作,并将自动化人工劳动密集型任务,如包裹递送、农业检查和基础设施修复。目前的空中机械手原型缺乏控制保真度,无法确保此类操作所期望的可靠性和效率。为了克服这些限制,拟议的项目开发了利用飞行器能力的新型控制技术。如果成功,这项研究项目将使在极端环境中灵活而安全的空中操纵成为可能,而目前使用标准方法是不可能或不可行的。这项研究的目标是为机器人实现具有内置鲁棒性的规划和控制方法,这些机器人可以在自主和人工辅助模式下与环境交互和操纵环境。这是通过将感知-控制耦合问题作为统计学习问题来实现的,并自适应地计算决策策略以优化未来的性能并将违反安全的概率降至最低。该方法的核心是一种可证明稳定的自适应控制方法,该方法配备了关于最大期望成本和碰撞概率的概率鲁棒性保证。这些界限对应于通过贝叶斯可能近乎正确的分析得出的测量集中不等。两个实验平台为以下方面提供了概念验证:1)用于重复性任务(如负载运送、作物采样和远程清洁)的自主“空气抓取器”;2)协作机器人“空中之手”,直接协助人类操作员进入危险或难以进入的地方,例如在救援或安全敏感任务期间进行极端环境下的检查和维修。实施的技术是普遍适用的,并将作为开放源码的ROS兼容软件发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marin Kobilarov其他文献
Solvability of Geometric Integrators for Multi-body Systems
多体系统几何积分器的可解性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Solving optimal control problems by using inherent dynamical properties
利用固有的动态特性解决最优控制问题
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
K. Flaßkamp;S. Ober;Marin Kobilarov - 通讯作者:
Marin Kobilarov
Sample Complexity Bounds for Iterative Stochastic Policy Optimization
- DOI:
- 发表时间:
2015-12 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Discrete geometric motion control of autonomous vehicles
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Discrete Variational Optimal Control
离散变分最优控制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3
- 作者:
F. Jiménez;Marin Kobilarov;D. D. Diego - 通讯作者:
D. D. Diego
Marin Kobilarov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marin Kobilarov', 18)}}的其他基金
NRI:FND: Unifying standard physics-based control with learning-based perception and action to enable safe and agile object manipulation using unmanned aerial vehicles
NRI:FND:将基于物理的标准控制与基于学习的感知和行动相结合,以使用无人机实现安全、敏捷的物体操纵
- 批准号:
1925189 - 财政年份:2019
- 资助金额:
$ 49.61万 - 项目类别:
Standard Grant
Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
确保自主性的基于优化的规划和控制:概括自主空间任务的见解
- 批准号:
1931821 - 财政年份:2019
- 资助金额:
$ 49.61万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
- 批准号:
1302360 - 财政年份:2013
- 资助金额:
$ 49.61万 - 项目类别:
Continuing Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 49.61万 - 项目类别:
Continuing Grant
CAREER: Hierarchical Robust Stochastic Control for a Flexible and Sustainable Power Supply
职业:用于灵活和可持续电源的分层鲁棒随机控制
- 批准号:
2236843 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
Continuing Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
- 批准号:
2317583 - 财政年份:2023
- 资助金额:
$ 49.61万 - 项目类别:
Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2022
- 资助金额:
$ 49.61万 - 项目类别:
Postgraduate Scholarships - Doctoral
Adaptable and Robust Multi-Robot Decision Making through Generalized Sequential Stochastic Task Assignment
通过广义顺序随机任务分配进行适应性强的鲁棒多机器人决策
- 批准号:
2103817 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2021
- 资助金额:
$ 49.61万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2020
- 资助金额:
$ 49.61万 - 项目类别:
Postgraduate Scholarships - Doctoral
Generalization of Uncertainty Models in Stochastic Optimal Control and Its Application to Robust Trajectory Design
随机最优控制中不确定性模型的推广及其在鲁棒轨迹设计中的应用
- 批准号:
19K15214 - 财政年份:2019
- 资助金额:
$ 49.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2019
- 资助金额:
$ 49.61万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stochastic and Robust Optimization Approaches for Financial and Operations Engineering
财务和运营工程的随机鲁棒优化方法
- 批准号:
RGPIN-2014-04535 - 财政年份:2018
- 资助金额:
$ 49.61万 - 项目类别:
Discovery Grants Program - Individual