Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
确保自主性的基于优化的规划和控制:概括自主空间任务的见解
基本信息
- 批准号:1931821
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last three decades we have witnessed historic missions to Mars where unmanned space vehicles successfully landed on and explored the Martian surface in search of evidence of past life. Recently reusable rockets have captured the public's imagination by delivering payloads to orbit and then landing safely back on Earth. A common requirement for these space vehicles is that they must be operated autonomously during the atmospheric entry, descent, and landing (EDL). Furthermore, the first time they are ever tested as a fully integrated system is during the actual mission. This makes EDL extremely challenging and risky. A key technology that has enabled these recent successful space missions is the onboard software that controls the vehicle's motion during EDL, which must work properly under all expected variations in the mission conditions. Motivated by these effective point-design solutions from aerospace engineering, our research aims to develop a unified algorithmic framework for motion planning and control for a large class of Earth-based autonomous vehicles that operate in challenging environments with increasingly complex performance requirements. Applications include autonomous aerial, ground, and underwater vehicles serving many safety critical tasks in, for example, search and rescue, disaster relief, terrain mapping and monitoring, and toxic spill cleanup applications to name few.Our main hypothesis is that optimization-based motion planning and control provides an effective and unifying mathematical framework that is able to handle the autonomy problems encountered in space applications and this framework can be generalized to a large variety of autonomous vehicles. Our project aims to build this optimization-based framework by leveraging invaluable insights and experiences from NASA's flagship missions to Mars. These missions had to succeed during their first attempt and any failure would have led to catastrophic results, i.e., there was no margin for error. Hence Mars landing can be considered a prototypical benchmark problem, as it encompasses complexities that one would also face with other (Earth-based) autonomous vehicles: switching between a variety of operational modes; limited fuel, power, and mission time; state and control constraints; and uncertainties in the situational awareness, sensing, actuation, vehicle dynamics, and environment. Our project aims to provide algorithmic foundations for optimization-based motion planning and control. It has both a theoretical component to produce fundamental results that can be used to build trustworthy algorithms and a comprehensive experimental component to produce the empirical evidence necessary to evaluate these algorithms on real-world examples, i.e., autonomous quad-rotors and underwater vehicles. Our research team is assembled to build on these lessons learned in space applications and to develop optimization-based planning and control methods that can seamlessly be transitioned to practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的三十年里,我们见证了火星上的历史性任务,无人驾驶航天器成功地降落在火星表面并进行了探索,以寻找过去生命的证据。最近,可重复使用的火箭通过将有效载荷送入轨道,然后安全降落在地球上,吸引了公众的想象力。这些航天器的一个共同要求是它们必须在大气层进入、下降和着陆(EDL)过程中自主操作。此外,它们第一次作为一个完全集成的系统进行测试是在实际任务期间。这使得EDL极具挑战性和风险性。使最近这些成功的太空任务得以实现的一项关键技术是在EDL期间控制飞行器运动的机载软件,该软件必须在任务条件的所有预期变化下正常工作。在航空航天工程这些有效的点设计解决方案的推动下,我们的研究旨在为一大类在具有日益复杂的性能要求的苛刻环境中运行的地面自主飞行器开发一个统一的运动规划和控制算法框架。应用包括执行许多安全关键任务的自主空中、地面和水下机器人,例如搜索和救援、救灾、地形测绘和监测以及有毒物质泄漏清理应用等等。我们的主要假设是,基于优化的运动规划和控制提供了一个有效和统一的数学框架,能够处理空间应用中遇到的自主问题,该框架可以推广到多种类型的自主机器人。我们的项目旨在通过利用NASA火星旗舰任务的宝贵见解和经验来构建这个基于优化的框架。这些任务必须在第一次尝试中成功,任何失败都将导致灾难性的结果,也就是说,没有出错的余地。因此,登陆火星可以被认为是一个典型的基准问题,因为它包含了人们在其他(地面)自动驾驶飞行器上也会面临的复杂性:在各种操作模式之间切换;有限的燃料、功率和任务时间;状态和控制约束;以及态势感知、感知、驱动、车辆动力学和环境中的不确定性。我们的项目旨在为基于优化的运动规划和控制提供算法基础。它既有一个理论部分来产生可用于构建可信算法的基本结果,也有一个全面的实验部分来产生在真实世界的例子上评估这些算法所需的经验证据,即自主四旋翼和水下机器人。我们的研究团队是为了在空间应用中吸取这些经验教训的基础上建立起来的,并开发可以无缝过渡到实践的基于优化的规划和控制方法。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Closed-Form Minkowski Sum Approximations for Efficient Optimization-Based Collision Avoidance
用于基于高效优化的碰撞避免的闭式 Minkowski 和近似
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Guthrie, James;Kobilarov, Marin;Mallada, Enrique
- 通讯作者:Mallada, Enrique
Decentralized Safety for Aggressively Maneuvering Multi-Robot Interactions
用于主动操纵多机器人交互的分散安全性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rivera, Phillip;Kobilarov, Marin
- 通讯作者:Kobilarov, Marin
Probably Approximately Correct Nonlinear Model Predictive Control (PAC-NMPC)
- DOI:10.1109/lra.2023.3315209
- 发表时间:2022-10
- 期刊:
- 影响因子:5.2
- 作者:A. Polevoy;Marin Kobilarov;Joseph L. Moore
- 通讯作者:A. Polevoy;Marin Kobilarov;Joseph L. Moore
Robust Policy Search for an Agile Ground Vehicle Under Perception Uncertainty
- DOI:10.1109/iros51168.2021.9636552
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:S. Sefati;Subhransu Mishra;Matthew Sheckells;Kapil D. Katyal;Jin Bai;Gregory Hager;Marin Kobilarov
- 通讯作者:S. Sefati;Subhransu Mishra;Matthew Sheckells;Kapil D. Katyal;Jin Bai;Gregory Hager;Marin Kobilarov
Identifying Performance Regression Conditions for Testing & Evaluation of Autonomous Systems
确定测试的性能回归条件
- DOI:10.1109/iros51168.2021.9636004
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Stankiewicz, Paul;Kobilarov, Marin
- 通讯作者:Kobilarov, Marin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marin Kobilarov其他文献
Solvability of Geometric Integrators for Multi-body Systems
多体系统几何积分器的可解性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Solving optimal control problems by using inherent dynamical properties
利用固有的动态特性解决最优控制问题
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
K. Flaßkamp;S. Ober;Marin Kobilarov - 通讯作者:
Marin Kobilarov
Sample Complexity Bounds for Iterative Stochastic Policy Optimization
- DOI:
- 发表时间:
2015-12 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Discrete geometric motion control of autonomous vehicles
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Marin Kobilarov - 通讯作者:
Marin Kobilarov
Discrete Variational Optimal Control
离散变分最优控制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3
- 作者:
F. Jiménez;Marin Kobilarov;D. D. Diego - 通讯作者:
D. D. Diego
Marin Kobilarov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marin Kobilarov', 18)}}的其他基金
NRI:FND: Unifying standard physics-based control with learning-based perception and action to enable safe and agile object manipulation using unmanned aerial vehicles
NRI:FND:将基于物理的标准控制与基于学习的感知和行动相结合,以使用无人机实现安全、敏捷的物体操纵
- 批准号:
1925189 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NRI: Robust Stochastic Control for Agile Aerial Manipulation
NRI:敏捷空中操纵的鲁棒随机控制
- 批准号:
1527432 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
- 批准号:
1302360 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
RGPIN-2021-03495 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
School Meal Menu Planning and Cooking Scheduling Based on Mathematical Optimization Under Uncertainty
不确定性下基于数学优化的学校膳食菜单规划与烹饪调度
- 批准号:
21K04538 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
RGPIN-2021-03495 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Improving Optimization-Based Scheduling and Path Planning Decision Support: An Artificial Intelligence and Operations Research Approach With Applications to Surveillance and Search
改进基于优化的调度和路径规划决策支持:一种应用于监视和搜索的人工智能和运筹学方法
- 批准号:
DGECR-2021-00189 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Launch Supplement
Planning and optimization of dose distribution based on biological effectiveness of carbon ion radiotherapy for osteosarcoma
基于碳离子放射治疗骨肉瘤生物学效应的剂量分布规划与优化
- 批准号:
20K16751 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CPS: Medium: Collaborative Research: Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
CPS:中:协作研究:基于优化的规划和控制以确保自主:概括自主空间任务的见解
- 批准号:
1931744 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
CPS:中:协作研究:基于优化的规划和控制以确保自主:概括自主空间任务的见解
- 批准号:
1931815 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Project based remanufacturing planning and optimization
基于项目的再制造规划和优化
- 批准号:
508851-2017 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Collaborative Research and Development Grants
Project based remanufacturing planning and optimization
基于项目的再制造规划和优化
- 批准号:
508851-2017 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Collaborative Research and Development Grants
Systematization of Process Planning for Machining Operations Based on Topology Optimization of Workpiece
基于工件拓扑优化的加工作业工艺规划系统化
- 批准号:
18K18804 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)