DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials

DMREF:协作研究:合成基因组:新材料合成的数据挖掘

基本信息

  • 批准号:
    1534340
  • 负责人:
  • 金额:
    $ 69.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL:Development of new materials is the key to addressing many of the technical challenges our society faces from energy storage to water treatment and purification. To offer just a few examples: in the oil industry, new materials are needed to withstand aggressive conditions, where failure comes with tremendous cost; electrified vehicle drive trains will be advanced by higher performing battery electrodes; carbon dioxide capture requires inexpensive new materials with the proper thermodynamic and kinetic behavior towards absorption and release. The rapid design of novel materials has been transformed by approaches where properties for many tens of thousands of materials can be predicted or inferred by a computer. The pace of commercially-realized advanced materials seems now to be limited by trial-and-error synthesis techniques. In other words, researchers have accelerated the process of knowing what to make such that the bottleneck is now how to make the structures. This research will learn from existing knowledge to develop insight on the synthesis of inorganic compounds. The analytical foundation of these activities stems from advances in machine learning that has allowed computers to excel in typically "human" tasks such as health care diagnoses and game show participation. This research will further accelerate the goals of efforts such as the Materials Genome Initiative for Global Competitiveness by enabling efficient synthesis of novel materials thereby speeding up evaluation of newly suggested materials.TECHNICAL:Materials are a key bottleneck in many technological advances such as efficient catalysis, clean energy generation, and water filtration. Materials Genome Initiative-style efforts have produced several examples of computationally designed materials in the fields of energy storage, catalysis, thermoelectrics, and hydrogen storage, as well as large data resources that can be used to screen for potentially transformative compounds. These successes in accelerated materials design have moved the bottleneck in materials development towards the synthesis of novel compounds, and much of the momentum and efficiency gained in the design process becomes gated by trial-and-error synthesis techniques. This research will do for solid state advanced materials synthesis what modern computational methods are doing for materials properties: Build predictive tools for synthesis so that targeted compounds can be synthesized more rapidly. This work will combine knowledge regarding synthesis, first principles modeling, and data mining to suggest synthesis routes for novel compounds.
非技术:新材料的开发是解决我们社会面临的许多技术挑战的关键,从能源储存到水处理和净化。仅举几个例子:在石油行业,需要新材料来承受侵蚀性条件,在这种条件下,故障会带来巨大的成本;电动汽车驱动系统将通过更高性能的电池电极来推进;二氧化碳捕获需要具有适当的热力学和动力学行为的廉价新材料来吸收和释放。新材料的快速设计已经被一种方法所改变,在这种方法中,计算机可以预测或推断数万种材料的性质。现在,先进材料商业化的步伐似乎受到了反复试验的合成技术的限制。换句话说,研究人员加快了了解制造什么的过程,现在的瓶颈是如何制造这些结构。这项研究将学习现有的知识,以发展对无机化合物合成的洞察力。这些活动的分析基础源于机器学习的进步,机器学习使计算机在医疗诊断和参与游戏节目等典型的“人类”任务中表现出色。这项研究将进一步加速材料基因组计划等努力的目标,使新材料能够有效地合成,从而加快对新建议材料的评估。技术:材料是许多技术进步的关键瓶颈,如高效催化、清洁能源生产和水过滤。材料基因组倡议--已经在能源储存、催化、热电和氢储存领域产生了几个通过计算设计的材料的例子,以及可用于筛选潜在变革性化合物的大型数据资源。加速材料设计的这些成功将材料开发的瓶颈转移到了新化合物的合成上,设计过程中获得的大部分动力和效率都被试错合成技术所控制。这项研究将为固态先进材料合成做现代计算方法对材料性能所做的事情:建立合成预测工具,以便更快地合成目标化合物。这项工作将结合有关合成、第一性原理建模和数据挖掘的知识,为新化合物的合成路线提供建议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elsa Olivetti其他文献

Design and experimental validation of geopolymer-based refractory insulation with closed porosity for molten salt storage applications
用于熔盐储能应用的具有封闭孔隙率的地聚合物基耐火隔热材料的设计与实验验证
  • DOI:
    10.1016/j.est.2025.115493
  • 发表时间:
    2025-03-30
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Youyang Zhao;Thomas R. Viverito;Emma Wagstaff;Tunahan Aytas;Reynaldo Pereira;Elsa Olivetti
  • 通讯作者:
    Elsa Olivetti
Analysis of the impact of automaker strategies on lithium price elasticity using a novel bottom-up demand model
使用一种新颖的自下而上需求模型分析汽车制造商策略对锂价格弹性的影响
  • DOI:
    10.1016/j.resconrec.2025.108477
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Luke Robert Sullivan;Elizabeth A. Moore;Phuong Ho;Alison A. Wang;Gwyneth Margaux Tangog;Karan Bhuwalka;Elsa Olivetti;Richard Roth
  • 通讯作者:
    Richard Roth
Creating, Teaching, and Revering Value: Highlights from an EPD Symposium in Honor of Diran Apelian at REWAS 2022
  • DOI:
    10.1007/s11837-022-05519-2
  • 发表时间:
    2022-09-12
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Elsa Olivetti
  • 通讯作者:
    Elsa Olivetti

Elsa Olivetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elsa Olivetti', 18)}}的其他基金

GOALI: Data-driven design of recycling tolerant aluminum alloys incorporating future material flows
目标:数据驱动的可回收铝合金设计,结合未来的材料流
  • 批准号:
    2243914
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1922311
  • 财政年份:
    2019
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
CAREER: Holistic Assessment of the Potential of Byproduct-Derived Alkali-Activated Materials
职业:副产品衍生的碱活化材料潜力的整体评估
  • 批准号:
    1751925
  • 财政年份:
    2018
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic simulation approaches to consequential life cycle assessment to evaluate recycling and substitution in metal and paper-derived products
合作研究:动态模拟方法进行后续生命周期评估,以评估金属和纸制品的回收和替代
  • 批准号:
    1605050
  • 财政年份:
    2016
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 69.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了