GOALI: Data-driven design of recycling tolerant aluminum alloys incorporating future material flows

目标:数据驱动的可回收铝合金设计,结合未来的材料流

基本信息

  • 批准号:
    2243914
  • 负责人:
  • 金额:
    $ 34.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Metals production contributes to 8% of greenhouse gas emissions worldwide. Improving materials efficiency must play a role in decarbonizing metals production because such strategies are available now and achievable along a shorter time horizon than novel production methods. One strategy to improve material consumption is through improved materials recovery using recycling. Recycling is particularly beneficial for aluminum, where energy benefits from use of recycled materials are much improved relative to primary consumption. Significantly improved recycling, both in terms of quantity and quality, can play a role in achieving decarbonization targets over the necessary greenhouse gas reduction timeline. To this end, metals production industries have set goals to increase the use of recycled content. In the face of an evolving scrap stream and shifts in product demand, these targets will not be achievable without coupling alloy design with considerations of future end-of-life scrap streams. However, alloy design has traditionally focused on improving performance without much regard for environmental impact or the ability to recycle the materials. This project will design new alloys by including recyclability in addition to performance metrics into the design process accounting for how scrap streams are expected to evolve in the future.The goal of this project is to create a design pipeline that can be used alongside traditional alloy design to create recycling-friendly alloys. Recycling-friendly alloys are defined as alloys that can incorporate a lot of scrap in their production (sink) but that can also be used in the production of a lot of other alloys (source). This research will address this trade-off between sink and source by (i) creating a materials distribution model to inform recycling and future scrap streams, (ii) developing a Bayesian optimization algorithm to effectively explore the alloy space, and (iii) identifying the design space using constraints on alloys compositions and properties. The material distribution model will be a combination of material flow analysis and blending model that will inform the future material streams (compositions, quantities, prices of scrap streams and future demand) and how those can be used to produce new alloys. This model will then be maximized over the alloy space using the efficient optimization method. Finally, the optimization to find the best alloy will be subject to constraints on compositions, thermodynamic quantities, and properties. Overall, this work focuses on alloy design that optimizes scrap use in projected material flows by integrating a materials distribution model, efficient optimization, and constrained design space. Since these elements have never been integrated together, not only is the approach unique, but the integration involves advances in each of these areas. Thus, the proposed work represents a step forward in sustainable alloy design and integrates and innovates on previously developed approaches in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属生产占全球温室气体排放量的8%。提高材料效率必须在脱碳金属生产中发挥作用,因为这样的策略现在是可用的,并且比新的生产方法在沿着更短的时间内可以实现。改善材料消耗的一项战略是通过利用回收来改善材料回收。回收利用对铝特别有利,其中使用回收材料的能源效益相对于初级消费有很大改善。在数量和质量方面显著改善回收利用,可以在必要的温室气体减排时间轴内实现脱碳目标。为此,金属生产行业已经制定了增加回收成分使用的目标。面对不断变化的废料流和产品需求的变化,如果不将合金设计与未来报废废料流的考虑结合起来,这些目标将无法实现。然而,合金设计传统上专注于提高性能,而不太考虑环境影响或材料回收的能力。该项目将通过在设计过程中考虑废料流在未来的发展方式,将可回收性和性能指标纳入新合金的设计中。该项目的目标是创建一个设计管道,可以与传统合金设计一起使用,以创建回收友好型合金。回收友好型合金被定义为在生产过程中可以包含大量废料的合金(汇),但也可以用于生产许多其他合金(源)。本研究将通过以下方式解决汇和源之间的这种权衡:(i)创建材料分布模型,以通知回收和未来的废料流,(ii)开发贝叶斯优化算法,以有效地探索合金空间,以及(iii)使用对合金成分和性能的约束来确定设计空间。材料分配模型将是材料流分析和混合模型的组合,将告知未来的材料流(成分,数量,废料流的价格和未来需求)以及如何使用这些来生产新合金。然后使用有效的优化方法在合金空间上最大化该模型。最后,找到最佳合金的优化将受到成分、热力学量和性能的约束。总的来说,这项工作的重点是合金设计,优化废料的使用,在预计的材料流整合材料分布模型,有效的优化,并限制设计空间。由于这些要素从未被整合在一起,因此不仅方法独特,而且整合涉及这些领域中的每一个。因此,该项目代表了可持续合金设计的一个进步,并整合和创新了该领域先前开发的方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elsa Olivetti其他文献

Design and experimental validation of geopolymer-based refractory insulation with closed porosity for molten salt storage applications
用于熔盐储能应用的具有封闭孔隙率的地聚合物基耐火隔热材料的设计与实验验证
  • DOI:
    10.1016/j.est.2025.115493
  • 发表时间:
    2025-03-30
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Youyang Zhao;Thomas R. Viverito;Emma Wagstaff;Tunahan Aytas;Reynaldo Pereira;Elsa Olivetti
  • 通讯作者:
    Elsa Olivetti
Analysis of the impact of automaker strategies on lithium price elasticity using a novel bottom-up demand model
使用一种新颖的自下而上需求模型分析汽车制造商策略对锂价格弹性的影响
  • DOI:
    10.1016/j.resconrec.2025.108477
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Luke Robert Sullivan;Elizabeth A. Moore;Phuong Ho;Alison A. Wang;Gwyneth Margaux Tangog;Karan Bhuwalka;Elsa Olivetti;Richard Roth
  • 通讯作者:
    Richard Roth
Creating, Teaching, and Revering Value: Highlights from an EPD Symposium in Honor of Diran Apelian at REWAS 2022
  • DOI:
    10.1007/s11837-022-05519-2
  • 发表时间:
    2022-09-12
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Elsa Olivetti
  • 通讯作者:
    Elsa Olivetti

Elsa Olivetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elsa Olivetti', 18)}}的其他基金

DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1922311
  • 财政年份:
    2019
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
CAREER: Holistic Assessment of the Potential of Byproduct-Derived Alkali-Activated Materials
职业:副产品衍生的碱活化材料潜力的整体评估
  • 批准号:
    1751925
  • 财政年份:
    2018
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic simulation approaches to consequential life cycle assessment to evaluate recycling and substitution in metal and paper-derived products
合作研究:动态模拟方法进行后续生命周期评估,以评估金属和纸制品的回收和替代
  • 批准号:
    1605050
  • 财政年份:
    2016
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1534340
  • 财政年份:
    2015
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了