A Conference on Waves, Spectral Theory, and Applications

波、谱理论及应用会议

基本信息

项目摘要

This project will provide support for participants, especially junior researchers, in the conference "Waves, Spectral Theory, and Applications" in Princeton, NJ from September 10-11, 2015. This conference will bring together experts in both the theory of nonlinear partial differential equations and cutting edge applications, which are dramatically impacted by the study of waves and spectral theory in nonlinear science. The models to be discussed at the conference have applications to the studies of graphene, nonlinear optics, neuroscience, large quantum systems, and the formation of topological states. Such states are ideal for the transfer or storage of energy or information. Another important set of mathematical problems concerns the issues for design of metamaterials. Metamaterials are composites that include nano-size microstructures. In some regimes these materials exhibit properties not achievable in naturally occurring materials. For example, it is possible to manufacture a metamaterial with negative index or reflection that allows one to "cloak" objects, making them invisible. The conference will focus on the issues of spectral theory and nonlinear dynamics that are instrumental for understanding the behavior of nonlinear bound states interacting with various types of potentials. Another focus of the conference is on the metameterials-related problems that lie outside the realm of standard homogenization theory as well as to problems concerning non-elliptic limits of families of elliptic problems. More details about the conference can be found at https://sites.google.com/site/wavesandspectraltheory/
该项目将为参与者提供支持,特别是初级研究人员,在会议“波,谱理论和应用”在普林斯顿,新泽西州从2015年9月10日至11日。本次会议将汇集非线性偏微分方程理论和前沿应用的专家,这些应用受到非线性科学中波和谱理论研究的巨大影响。会议上讨论的模型可应用于石墨烯,非线性光学,神经科学,大型量子系统和拓扑状态的形成的研究。 这种状态对于能量或信息的传输或存储是理想的。另一组重要的数学问题涉及超材料的设计问题。超材料是包括纳米尺寸微结构的复合材料。在某些情况下,这些材料表现出在天然存在的材料中无法实现的性质。例如,有可能制造一种具有负折射率或反射的超材料,允许人们“隐藏”物体,使其不可见。 会议将集中讨论光谱理论和非线性动力学问题,这些问题有助于理解与各种类型的势相互作用的非线性束缚态的行为。会议的另一个重点是关于标准均匀化理论领域之外的与超材料相关的问题,以及关于椭圆问题族的非椭圆极限的问题。有关会议的更多详细信息,请访问https://sites.google.com/site/wavesandspectraltheory/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Marzuola其他文献

Counting numerical sets with no small atoms
  • DOI:
    10.1016/j.jcta.2010.03.002
  • 发表时间:
    2010-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy Marzuola;Andy Miller
  • 通讯作者:
    Andy Miller

Jeremy Marzuola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Marzuola', 18)}}的其他基金

Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
  • 批准号:
    2307384
  • 财政年份:
    2023
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Algorithms and Analysis for Models in Materials Science, Fluids, and Probability
材料科学、流体和概率模型的算法和分析
  • 批准号:
    1909035
  • 财政年份:
    2019
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear PDE Models in Mathematical Physics and Experiment
职业:数学物理和实验中的非线性偏微分方程模型
  • 批准号:
    1352353
  • 财政年份:
    2014
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Continuing Grant
Nonlinear Interactions and Dynamics in Problems From Fluids and Optics
流体和光学问题中的非线性相互作用和动力学
  • 批准号:
    1312874
  • 财政年份:
    2013
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
  • 批准号:
    1207940
  • 财政年份:
    2012
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703531
  • 财政年份:
    2007
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Fellowship Award

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Quantification of energy cascade of internal gravity waves with varying spectral slopes
具有不同谱斜率的内部重力波能量级联的量化
  • 批准号:
    2241495
  • 财政年份:
    2023
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Spatio-temporal control of ultrashort optical pulses based on hyper-spectral control of light waves
基于光波高光谱控制的超短光脉冲时空控制
  • 批准号:
    17K05069
  • 财政年份:
    2017
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tropospheric Gravity waves studies using data-compensated spectral analysis and an upgraded profiler
使用数据补偿光谱分析和升级的剖面仪进行对流层重力波研究
  • 批准号:
    512288-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.2万
  • 项目类别:
    University Undergraduate Student Research Awards
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
  • 批准号:
    1600749
  • 财政年份:
    2016
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Generation processes of spectral anisotropy of turbulence by magnetohydrodynamic waves in the solar wind
太阳风中磁流体动力波湍流光谱各向异性的产生过程
  • 批准号:
    15K17770
  • 财政年份:
    2015
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
RAPID: Cone Penetration Testing (CPT) and Spectral Analysis of Surface Waves (SASW) Testing at Seismograph Stations with Liquefiable Soils Affected by the Tohoku Earthquake, Japan
RAPID:在受日本东北地震影响的可液化土壤地震台上进行锥入度测试 (CPT) 和面波频谱分析 (SASW) 测试
  • 批准号:
    1138168
  • 财政年份:
    2011
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Indefinite metric space methods in the spectral stability of solitary waves in Hamiltonian systems.
哈密​​顿系统中孤立波谱稳定性的不定度量空间方法。
  • 批准号:
    343279-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Postdoctoral Fellowships
Spectral analysis and stability for wave patterns and multidimensional waves
波型和多维波的频谱分析和稳定性
  • 批准号:
    0906370
  • 财政年份:
    2009
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Standard Grant
Indefinite metric space methods in the spectral stability of solitary waves in Hamiltonian systems.
哈密​​顿系统中孤立波谱稳定性的不定度量空间方法。
  • 批准号:
    343279-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 2.2万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了