Spectral Theory and Nonlinear Waves

谱理论和非线性波

基本信息

  • 批准号:
    2054841
  • 负责人:
  • 金额:
    $ 40.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to the study of wave propagation in both structured and disordered media. Modern society relies extensively on engineering applications involving transmission of waves. Cell phone communications, satellite data transmissions and information on the internet - all sent along thousands of miles of glass fiber cables - are controlled by mathematics describing the motion of waves. A striking feature of the wave propagation, and the topic of this project, is its universality. In fact, waves propagating on astronomical scales such as the gravitational waves detected by LIGO, as well as waves on a microscopic scale such as those emitted by atoms in the form of electromagnetic radiation in a laser, are governed by exactly the same mathematical theories. It is therefore of the utmost strategic importance for the well-being and safety of the society at large to train young specialists in the PI’s area of research; this is also one of the goals of this project. Experience shows that this broader impact can only be achieved by scientists who are actively working at the frontier of knowledge. The PI recently completed a perturbative analysis of equivariant critical wave maps into the 2-sphere, without any symmetry assumptions on the perturbations. This nonlinear analysis is based on the semi-classical representations of wave functions for Bessel-type potentials which the PI developed more than a decade ago in the context of the Price law in general relativity. Application of this new technique is planned to other nonlinear evolution equations, which admit separation of variables and a reduction to an infinite system of coupled semi-classical wave equations. The role of the semi-classical parameter h is typically played by the reciprocal of the angular momentum. Another area in which spectral theory is now coming to the fore is the rapidly developing field of asymptotic stability of topological solitons, specifically of kink solutions for one-dimensional scalar fields. Jointly with others, the PI recently demonstrated how to treat Klein-Gordon equations with a nongeneric potential and long-range nonlinearities. The basic scalar field equations each exhibit a nongeneric potential with a threshold resonance and are therefore of the type to be considered in this project. The PI's work on quasi-periodic localization and its ramifications will be continued. A particularly challenging novel perspective will be offered by nonuniformly hyperbolic dynamical systems, where there are strong indications that it is possible to bring Anderson localization techniques to bear.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画致力于研究波在结构性与无序性介质中的传播。现代社会广泛依赖于涉及波的传输的工程应用。手机通信、卫星数据传输和互联网上的信息--都是沿着沿着数千英里的玻璃纤维电缆发送的--都是由描述波运动的数学控制的。波传播的一个显著特征,也是这个项目的主题,是它的普遍性。事实上,在天文尺度上传播的波,如LIGO探测到的引力波,以及微观尺度上的波,如原子在激光器中以电磁辐射形式发射的波,都受到完全相同的数学理论的支配。因此,对整个社会的福祉和安全来说,在PI的研究领域培训年轻专家具有极其重要的战略意义;这也是该项目的目标之一。经验表明,只有在知识前沿积极工作的科学家才能实现这种更广泛的影响。PI最近完成了一个微扰分析的等变临界波映射到2-球,没有任何对称性假设的扰动。这种非线性分析是基于贝塞尔型势的波函数的半经典表示,这是PI在十多年前在广义相对论中的普赖斯定律的背景下开发的。这种新技术的应用计划到其他非线性发展方程,其中承认分离变量和减少耦合半经典波动方程的无限系统。半经典参数h的作用通常由角动量的倒数来扮演。另一个领域中,谱理论现在是脱颖而出是迅速发展领域的渐近稳定性的拓扑孤子,特别是扭结解决方案的一维标量场。PI最近与其他人一起演示了如何处理具有非通用势和长程非线性的Klein-Gordon方程。基本的标量场方程,每个表现出一个非通用的潜力与阈值共振,因此在这个项目中要考虑的类型。PI的准周期定位及其衍生物的工作将继续进行。一个特别具有挑战性的新的视角将提供非均匀双曲动力系统,有强烈的迹象表明,它是可能的,使安德森本地化技术bear.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

Correction to: On Localization and the Spectrum of Multi-frequency Quasi-periodic Operators
  • DOI:
    10.1007/s10013-025-00736-z
  • 发表时间:
    2025-03-27
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Michael Goldstein;Wilhelm Schlag;Mircea Voda
  • 通讯作者:
    Mircea Voda
石英のESR信号強度と結晶化度によるタクラマカン砂漠における砂の供給源と運搬システムの解明
基于ESR信号强度和石英结晶度阐明塔克拉玛干沙漠沙子来源和输送系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠;数土直紀;烏田明典
  • 通讯作者:
    烏田明典
A perturbation theory for core operators of Hilbert-Schmidt submodules
Hilbert-Schmidt子模核心算子的摄动理论
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
Biharmonic Lagrangean submanifolds in Kaehler manifolds
凯勒流形中的双调和拉格朗日子流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;H. Urakawa and S. Maeta
  • 通讯作者:
    H. Urakawa and S. Maeta

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
  • 批准号:
    1160817
  • 财政年份:
    2012
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0617854
  • 财政年份:
    2005
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
  • 批准号:
    0241930
  • 财政年份:
    2002
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Research Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear critical point theory near singular solutions
奇异解附近的非线性临界点理论
  • 批准号:
    EP/W026597/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Research Grant
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
  • 批准号:
    2889795
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Studentship
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
  • 批准号:
    23K03149
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of the effect of dissipation in the nonlinear response of magnets
磁体非线性响应中耗散效应的理论
  • 批准号:
    23K03275
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Hyperheuristic Method Using The Nonlinear Dynamical Theory for Next-Generation Delivery Planning
使用非线性动力学理论的超启发式方法进行下一代交付计划
  • 批准号:
    23K04274
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Theory for Smectics and Layered Solutions in Thin Films
薄膜中近晶和层状溶液的非线性理论
  • 批准号:
    2306393
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant
Study of control theory based on a reduction of nonlinear dynamical systems
基于非线性动力系统约化的控制理论研究
  • 批准号:
    22H03663
  • 财政年份:
    2022
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了