Nonlinear Interactions and Dynamics in Problems From Fluids and Optics

流体和光学问题中的非线性相互作用和动力学

基本信息

项目摘要

The goal of this project will be to study theoretically and computationally quasilinear dispersive partial differential equations related to Hamiltonian models in mathematical physics from nonlinear optics, water waves, many body quantum systems and plasma physics. The equations of interest come from families of Schrödinger, Dirac, Korteweg-de Vries, and gravity-capillary wave equations. In addition, the PI hopes to continue to explore the strongly nonlinear effects relating to frequency cascades in Hamiltonian models on compact domains. The bulk of the project will focus on understanding theoretically the existence and regularity of solutions to strongly nonlinear models, as well as studying local and global dynamics of special solutions within these complex models. However, a component will also consist of using modern functional analytic techniques to study convergence of numerical methods and to study validity of discrete approximations to these models. Such analysis can serve as motivation for dynamics, as well as a means of testing asymptotic limits where direct analysis may no longer predict precise dynamics. In addition, the PI will work to develop a functional analytic framework for studying stability under stochastic perturbations of quasilinear models and computational approximations. Quasilinear partial differential equations arise in models where curvature has a strong influence on the underlying physics. Hence, surface tension in fluids, surface energy in crystals or relativistic effects in optics can introduce interaction terms that strongly depend upon higher order derivatives of the solution. It is the aim of this project to shed light on in what sense these models have solutions and in particular understand precise asymptotic descriptions of the solutions when possible. Capillary waves might be useful for measuring the surface signature of internal water waves, crystal relaxation plays a role in semiconductor fabrication and ultra-short pulse lasers have appeared in many recent physics applications and plasma generation. From a human resources standpoint, quasilinear problems provide a large pool of problems that can be used for training purposes in work with researchers of all levels, from undergraduate to postdoctoral. In particular, undergraduates can learn some of the innate difficulties in quasilinear equations by numerically analyzing simple 1,2-dimensional toy-model systems, graduate students can learn the functional analysis framework and develop the techniques through applications to reduced models or critical equations, and postdocs can collaborate on projects to fully explore the models, develop techniques and work towards optimal results in stability theory and phenomenology. Such approaches give trainees and the PI a broad class of analytic and computational tools to use for solving many interesting problems, allowing them to work towards a full enough understanding to consider complex nonlinear inverse problems and a large set of open nonlinear scattering problems to work on well into their careers.
该项目的目标是从理论上和计算上研究与非线性光学、水波、多体量子系统和等离子体物理等数学物理中的哈密顿模型相关的拟线性色散偏微分方程。 感兴趣的方程来自薛定谔方程组、狄拉克方程组、科特韦格-德弗里斯方程组和重力毛细管波动方程组。 此外,PI 希望继续探索与紧域哈密顿模型中的频率级联相关的强非线性效应。 该项目的大部分内容将集中于从理论上理解强非线性模型解的存在性和规律性,以及研究这些复杂模型中特殊解的局部和全局动力学。 然而,其中一个组成部分还包括使用现代泛函分析技术来研究数值方法的收敛性并研究这些模型的离散近似的有效性。 这种分析可以作为动力学的动机,以及测试渐近极限的方法,其中直接分析可能不再预测精确的动力学。 此外,PI 将致力于开发一个功能分析框架,用于研究拟线性模型和计算近似的随机扰动下的稳定性。 拟线性偏微分方程出现在曲率对基础物理有强烈影响的模型中。 因此,流体中的表面张力、晶体中的表面能或光学中的相对论效应可以引入强烈依赖于溶液的高阶导数的相互作用项。 该项目的目的是阐明这些模型在什么意义上有解决方案,特别是在可能的情况下理解解决方案的精确渐近描述。 毛细管波可能有助于测量内部水波的表面特征,晶体弛豫在半导体制造中发挥着重要作用,超短脉冲激光已出现在许多最近的物理应用和等离子体生成中。 从人力资源的角度来看,拟线性问题提供了大量问题,可用于与从本科生到博士后的各个级别的研究人员一起工作的培训目的。 特别是,本科生可以通过数值分析简单的 1,2 维玩具模型系统来了解拟线性方程的一些固有困难,研究生可以学习泛函分析框架并通过应用于简化模型或临界方程来开发技术,博士后可以在项目上进行合作,以充分探索模型,开发技术并致力于稳定性理论和现象学的最佳结果。 这些方法为学员和 PI 提供了广泛的分析和计算工具,可用于解决许多有趣的问题,使他们能够充分理解复杂的非线性逆问题和大量开放式非线性散射问题,以便在他们的职业生涯中顺利开展工作。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and Stability of Schrödinger Solitons on Noncompact Manifolds
非紧流形上薛定谔孤子的存在性和稳定性
  • DOI:
    10.1137/18m1216031
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Borthwick, David;Donninger, Roland;Lenzmann, Enno;Marzuola, Jeremy L.
  • 通讯作者:
    Marzuola, Jeremy L.
Existence and Uniqueness of Solutions for a Quasilinear KdV Equation with Degenerate Dispersion
简并色散拟线性KdV方程解的存在唯一性
Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
节点缺陷、谱流和狄利克雷到诺依曼图
  • DOI:
    10.1007/s11005-019-01159-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Berkolaiko, Gregory;Cox, Graham;Marzuola, Jeremy L.
  • 通讯作者:
    Marzuola, Jeremy L.
Compactons and their variational properties for degenerate KdV and NLS in dimension 1
  • DOI:
    10.1090/qam/1538
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    P. Germain;Benjamin Harrop-Griffiths;J. Marzuola
  • 通讯作者:
    P. Germain;Benjamin Harrop-Griffiths;J. Marzuola
Nonlocal stochastic-partial-differential-equation limits of spatially correlated noise-driven spin systems derived to sample a canonical distribution
为采样正则分布而导出的空间相关噪声驱动自旋系统的非局部随机偏微分方程极限
  • DOI:
    10.1103/physreve.102.052112
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gao, Yuan;Marzuola, Jeremy L.;Mattingly, Jonathan C.;Newhall, Katherine A.
  • 通讯作者:
    Newhall, Katherine A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Marzuola其他文献

Counting numerical sets with no small atoms
  • DOI:
    10.1016/j.jcta.2010.03.002
  • 发表时间:
    2010-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy Marzuola;Andy Miller
  • 通讯作者:
    Andy Miller

Jeremy Marzuola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Marzuola', 18)}}的其他基金

Spectral Theory and Applications for Models with Localized or Boundary Defects
具有局部或边界缺陷模型的谱理论和应用
  • 批准号:
    2307384
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Algorithms and Analysis for Models in Materials Science, Fluids, and Probability
材料科学、流体和概率模型的算法和分析
  • 批准号:
    1909035
  • 财政年份:
    2019
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
A Conference on Waves, Spectral Theory, and Applications
波、谱理论及应用会议
  • 批准号:
    1536072
  • 财政年份:
    2015
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear PDE Models in Mathematical Physics and Experiment
职业:数学物理和实验中的非线性偏微分方程模型
  • 批准号:
    1352353
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
  • 批准号:
    1207940
  • 财政年份:
    2012
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703531
  • 财政年份:
    2007
  • 资助金额:
    $ 17万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
  • 批准号:
    2303572
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
RAPID: Eco-evolutionary dynamics of host-parasite interactions in a novel environment
RAPID:新环境中宿主-寄生虫相互作用的生态进化动力学
  • 批准号:
    2323185
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Evaluating the Dynamics of Speech Accommodation: Evidence from Mixed-reality and Naturalistic L1-L2 Interactions
评估语音适应的动态:来自混合现实和自然 L1-L2 交互的证据
  • 批准号:
    2141281
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
使用新颖的环境传感技术量化河岸植被动态和水流相互作用,以实现基于自然的解决方案
  • 批准号:
    2875401
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Studentship
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
  • 批准号:
    2310725
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Low-input profiling of brain-region and cell-type specific epigenomic dynamics to understand gene-environment interactions in opioid addiction
对大脑区域和细胞类型特异性表观基因组动力学进行低输入分析,以了解阿片类药物成瘾中的基因与环境的相互作用
  • 批准号:
    10605801
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
  • 批准号:
    2237542
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Convective Cloud Dynamics and Turbulence Interactions with Microphysical Processes and the Atmospheric Environment (CLOUDY TIME)
对流云动力学和湍流与微物理过程和大气环境的相互作用(云时)
  • 批准号:
    NE/X018547/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Research Grant
Do microbe-mineral interactions influence nitrogen cycle dynamics?
微生物-矿物质相互作用会影响氮循环动力学吗?
  • 批准号:
    2874119
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了