EAGER: Biomimetic Materials for Improving Abiotic-Biotic Signal Transduction in Brain-Machine Interfaces
EAGER:用于改善脑机接口中非生物-生物信号转导的仿生材料
基本信息
- 批准号:1542196
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technicalThere are many interesting and open-ended questions regarding the function of the brain and the nervous system. The key signal transduction pathway lies between the electrical signals that are generated from excitable tissue and synthetic devices (e.g. computers and sensors) that can translate, interpret, and record this valuable information. However, the primary roadblock to seamless integration between the nervous system and computers is related to the lack of materials that can link these two disparate computing systems. The brain is soft, hydrated, and composed of neurons that use ions to communicate with one another. Conversely, silicon-based electronics are rigid, hermetically sealed, and use electrons to process information. This project will invent new biomimetic materials innovations that have the potential to bridge the tissue-device interface. These novel materials can match the mechanical properties of the brain and convert between ionic and electronic signals. Taken together, the improved electrode materials resulting from this project will create bioelectronics interfaces to learn more about the function of the brain. This project will also serve as an invaluable framework for training the next generation of materials scientists and electrical engineers. Students involved in this interdisciplinary project will receive training in polymer science, bioelectronics, and microelectronic device fabrication.TechnicalThis project will design and synthesize two classes of materials to improve the miniaturization of multielectrode arrays for use in brain-machine interfaces. Specifically, two materials innovations will be explored to increase charge injection limits and improve the chemical stealth of cortical brain-machine interfaces. First, nanoscale melanin films will increase the charge injection limit and promote electronic/ionic signal transduction. The rationale for this approach is based on the unique combination of nanoscale architecture, redox active chemistry, and biocompatibility that suggests that melanins can transduce ionic and electronic currents efficiently. Second, a class of ultra-compliant zwitterionic conducting hydrogel networks will be synthesized that will promote seamless mechanical, chemical, and electronic integration between electronically active implants and excitable tissue. Taken together, the materials innovations proposed herein will improve both the stimulation and recording of neural tissue using cortical brain-machine interfaces.
关于大脑和神经系统的功能,有许多有趣的和开放式的问题。关键的信号转导通路位于可兴奋组织产生的电信号和合成设备(例如计算机和传感器)之间,这些合成设备可以翻译,解释和记录这些有价值的信息。然而,神经系统和计算机之间无缝集成的主要障碍与缺乏可以连接这两个不同计算系统的材料有关。大脑是柔软的,含水的,由使用离子相互交流的神经元组成。相反,硅基电子产品是刚性的,密封的,并使用电子来处理信息。该项目将发明新的仿生材料创新,有可能桥接组织-设备界面。这些新材料可以匹配大脑的机械特性,并在离子和电子信号之间转换。总的来说,该项目产生的改进的电极材料将创建生物电子接口,以更多地了解大脑的功能。该项目还将作为培训下一代材料科学家和电气工程师的宝贵框架。参与该跨学科项目的学生将接受聚合物科学,生物电子学和微电子器件制造方面的培训。技术该项目将设计和合成两类材料,以提高用于脑机接口的多电极阵列的小型化。具体而言,将探索两种材料创新,以提高电荷注入限制并改善皮质脑机接口的化学隐身性。首先,纳米级黑色素膜将增加电荷注入极限并促进电子/离子信号转导。这种方法的基本原理是基于纳米级结构、氧化还原活性化学和生物相容性的独特组合,这表明黑色素可以有效地抑制离子和电子电流。其次,将合成一类超顺应性两性离子导电水凝胶网络,其将促进电子活性植入物和可兴奋组织之间的无缝机械、化学和电子整合。总之,本文提出的材料创新将使用皮层脑机接口改善神经组织的刺激和记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Bettinger其他文献
Christopher Bettinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Bettinger', 18)}}的其他基金
I-Corps: Bioresorbable drug delivery patch for the localized treatment of Crohn's Disease
I-Corps:用于局部治疗克罗恩病的生物可吸收药物输送贴片
- 批准号:
2230953 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Integration of Natural and Synthetic Biomaterials with Organic Electronics 2012 Symposium Materials Research Society Spring Meeting (MRS) at San Francisco, CA on April 9-13, 2012
天然和合成生物材料与有机电子的整合 2012 年材料研究学会春季会议 (MRS) 研讨会于 2012 年 4 月 9-13 日在加利福尼亚州旧金山举行
- 批准号:
1205103 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Engineered biomimetic materials for intestinal mucosal healing
用于肠粘膜愈合的工程仿生材料
- 批准号:
10719681 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Mechanics of materials for biomimetic manifolds
仿生歧管材料力学
- 批准号:
23K17317 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Creation of self-healing biomimetic composite materials functionalized by nanocapsules
创建纳米胶囊功能化的自修复仿生复合材料
- 批准号:
23K04477 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPIN-2019-04650 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic Materials and Bioprocesses for High-Density Cultures of Pancreatic Islets and Tissues
用于胰岛和组织高密度培养的仿生材料和生物过程
- 批准号:
RGPIN-2018-06131 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CAREER: A New Science for Biomimetic Microparticles in Drug Delivery Systems: Integrating Protein Polymer Science into Materials Science and Engineering
职业:药物输送系统仿生微粒的新科学:将蛋白质聚合物科学整合到材料科学与工程中
- 批准号:
2143126 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Biomimetic Sensors, Catalysts, and Materials: Chemistry at the Bio/Abio Interface
仿生传感器、催化剂和材料:Bio/Abio 界面的化学
- 批准号:
2203414 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BRAIN (Biomimetic Regenerative Angiogenic Immunomodulating Nanocomposite) materials for brain repair after stroke
BRAIN(仿生再生血管生成免疫调节纳米复合材料)用于中风后大脑修复的材料
- 批准号:
10367779 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Designing Biomimetic Neural Materials for Scalable 3D Cells
为可扩展 3D 细胞设计仿生神经材料
- 批准号:
2746869 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
BRAIN (Biomimetic Regenerative Angiogenic Immunomodulating Nanocomposite) materials for brain repair after stroke
BRAIN(仿生再生血管生成免疫调节纳米复合材料)用于中风后大脑修复的材料
- 批准号:
10545034 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: