Engineered biomimetic materials for intestinal mucosal healing
用于肠粘膜愈合的工程仿生材料
基本信息
- 批准号:10719681
- 负责人:
- 金额:$ 36.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-17 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBacteriaBacterial TranslocationBiocompatible MaterialsBiomimetic MaterialsBiomimeticsBiopsyCategoriesCellsChargeChemicalsChronicClinical TrialsColitisColonComplexDevelopmentDiseaseDisease remissionDrug CombinationsDrug Delivery SystemsEngineeringEpidermal Growth FactorEpithelial CellsEpitheliumGastrointestinal tract structureGelGene Expression ProfilingGoalsHistologyHydrogelsImmune responseImmune systemIn SituInflammationInflammation ProcessInflammatory Bowel DiseasesInterleukin-10Intestinal MucosaIntestinal permeabilityInvadedLamina PropriaMeasuresMediatingMediatorMucinsMucositisMucous MembraneMucous body substanceMusNormal tissue morphologyOutcomePathogenicityPatientsPermeabilityPharmaceutical PreparationsPolymersPre-Clinical ModelProcessProteinsRegulatory T-LymphocyteResearchRibosomal RNARodent ModelSeveritiesSignal TransductionSiteSystemTherapeuticTissuesTreatment EfficacyUlcerVancomycinchemically induced colitiscombinatorialdrug efficacyepithelial repairepithelium regenerationevidence basegut inflammationhealingimmunoregulationimprovedin vivoinnovationintestinal epitheliumintestinal homeostasismicrobiotamucosal sitemurine colitisnanoparticlenanoparticle drugnovel strategiesprematurepreventprimary endpointprotein expressionrepairedrestorationsuccesstargeted treatmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite continual improvement in the treatment of inflammatory bowel disease (IBD), achieving mucosal
healing remains difficult for many patients with IBD. A key hallmark of IBD is a compromised mucosal barrier
leading to erosions and ulcerations of the epithelium, which result in increased epithelial permeability and
uncontrolled immune response that induce and maintain intestinal inflammation. A healed and intact mucosa is
essential for preventing bacterial translocation from the lumen and modulating immune response to regain
intestinal homeostasis. However, limited success has been achieved for complete mucosal healing, likely due
to premature loss of drug efficacy and the off-target effect in normal tissue. Moreover, there remains a lack of
clear understanding on the complex healing process of the inflamed mucosa. Under chronic inflammation, how
the immune system and the microbiota may interfere with epithelial repair, thereby hindering healing, is largely
unknown. Therefore, there is a critical need for strategies that can target the inflamed mucosa to identify key
mediators in epithelial repair and promote healing. Without such strategies, mucosal healing will continue to be
a “therapeutic ceiling”. To address this challenge, we propose to engineer a biomaterial-based biomimetic
system that can selectively target the inflamed mucosa and locally release therapeutics to the
damaged epithelium. This system comprises a polymer-based hydrogel and drug-loaded nanoparticles
(NPs)—a hydrogel will create an interface at the inflamed mucosa, acting as a synthetic mucus layer, and the
NPs will release drugs locally to suppress bacteria, resolve inflammation, and repair the epithelium. Our
previous study showed that negatively charged hydrogels preferentially adhered to the inflamed mucosa based
on charge-mediated interaction in murine models of colitis and IBD patient biopsies. This proposed research
will combine the charge-based interaction with sol-to-gel transition using functionalized thermo-responsive
polymers to enhance the selective targeting. The NPs provide a platform for loading different drugs or drug
combinations to tackle the complex healing process at the site of inflammation. The overall objective of this
project is to maximize healing of the inflamed mucosa, enabled by drug delivery mimicking the natural mucosal
barrier and uncovering key mediators that regulate epithelial repair. The rationale is that determining
therapeutic efficacy of our biomimetic drug delivery system in preclinical models of IBD will provide a strong
scientific framework whereby new approaches to maximize mucosal healing can be developed. In this project,
we will pursue three specific aims: 1) a polymer-based synthetic mucus layer will be characterized and
optimized, 2) combinatorial NP drug delivery will be used to detect key mediators regulating epithelial repair,
and 3) therapeutic efficacy and mucosal healing by the drug-loaded biomimetic system will be determined.
These results will have a significant impact on repairing the mucosal barrier at the luminal-epithelial interface in
IBD, which may also open new horizons for treatment of many other mucosal barrier disorders.
项目摘要/摘要
尽管炎症性肠病(IBD)的治疗不断改进,但实现了
对于许多IBD患者来说,治愈仍然很困难。IBD的一个重要特征是黏膜屏障受损。
导致上皮的侵蚀和溃疡,从而导致上皮通透性增加和
引起和维持肠道炎症的不受控制的免疫反应。愈合和完整的粘膜是
对防止细菌移位和调节免疫反应以恢复体液至关重要
肠道内环境平衡。然而,在粘膜完全愈合方面取得的成功有限,这可能是由于
在正常组织中过早丧失药效和偏离靶点的影响。此外,仍然缺乏
对炎症黏膜复杂的愈合过程有清晰的认识。在慢性炎症下,如何
免疫系统和微生物群可能会干扰上皮修复,从而阻碍愈合,在很大程度上
未知。因此,迫切需要能够针对炎症粘膜的策略来识别关键
促进上皮修复和愈合的中介物。如果没有这样的策略,粘膜愈合将继续
一个“治疗天花板”。为了应对这一挑战,我们建议设计一种基于生物材料的仿生体
该系统可以选择性地靶向发炎的粘膜,并将治疗药物局部释放到
受损的上皮细胞。该系统由聚合物水凝胶和载药纳米粒组成。
(NPS)-水凝胶将在发炎的粘膜上创建一个界面,充当合成粘液层,并且
NPS将在局部释放药物来抑制细菌,消解炎症,修复上皮。我们的
先前的研究表明,带负电荷的水凝胶优先附着在炎症的粘膜上。
小鼠结肠炎模型和IBD患者活检组织中电荷介导的相互作用。这项拟议的研究
将基于电荷的相互作用与使用功能化热响应的溶胶到凝胶的转变相结合
增强选择性靶向的聚合物。NPs为装载不同的药物或药物提供了一个平台
用于处理炎症部位复杂的愈合过程的组合。这样做的总体目标是
该项目是通过模仿天然粘膜的药物输送,最大限度地愈合发炎的粘膜
屏障和揭示调节上皮修复的关键介体。其基本原理是确定
我们的仿生给药系统在IBD临床前模型中的治疗效果将提供强大的
科学框架,从而可以开发最大限度地促进粘膜愈合的新方法。在这个项目中,
我们将追求三个具体目标:1)基于聚合物的合成粘液层将被表征和
优化,2)组合NP给药将用于检测调节上皮修复的关键介质,
3)载药仿生系统的治疗效果和粘膜愈合情况将被确定。
这些结果将对修复腔-上皮界面处的粘膜屏障产生重大影响。
IBD,这也可能为治疗许多其他粘膜屏障疾病开辟新的天地。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sufeng Zhang其他文献
Sufeng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 36.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




