EAGER: Biophysical Theory of Mitotic Spindle Length Instability and Self Assembly

EAGER:有丝分裂纺锤体长度不稳定性和自组装的生物物理理论

基本信息

  • 批准号:
    1551095
  • 负责人:
  • 金额:
    $ 11.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award is made on an EAGER proposal, and it supports theoretical research and education on the biophysical theory of mitotic spindle length instability and self-assembly. The mitotic spindle is an important part of the cytoskeleton in eukaryotic cells. It is a self-assembled three-dimensional structure, primarily composed of tubes made from specific proteins, and it functions as a molecular machine that separates chromosomes during cell division. The ultimate goal of this research program is to provide an answer to the fundamental question: "How can the mitotic spindle, a non-equilibrium structure with constant molecular turnover i) self-assemble, and ii) maintain a fixed length." The PI intends to model the spindle length dynamics and self-assembly at multiple scales, ranging from nanometer to micron, bringing together ideas from statistical physics, molecular biophysics, structural, molecular, and cellular biology. The effort has a very substantial computational component involving a large-scale modeling framework. The PI intends to make the developed software freely available through an open-source license.TECHNICAL SUMMARYCells self-organize and dynamically generate complex three-dimensional structures. Filament nucleation, polymerization, and interaction-driven rearrangement are regulated in space and time to construct a wide variety of assemblies. An important general question in the study of self-organized cytoskeletal structures is how to integrate molecular-level knowledge to predict higher-order aspects of assembly and organization. A prototypical self-assembled cytoskeletal structure is the mitotic spindle, a microtubule-based machine that segregates chromosomes during eukaryotic cell division. This project will create a physical theory of the fission yeast mitotic spindle that recapitulates spindle length stability/fluctuations and bipolar spindle assembly to address the fundamental question of how a non-equilibrium structure with constant molecular turnover can self-assemble and maintain a fixed length. This project has three components. The PI will first develop essential model ingredients including multiple species of motors/crosslinks, novel motor force-velocity relations, two-stage binding/unbinding of motors/crosslinks, and dynamic microtubules. Then the PI will determine the mechanisms underlying mitotic spindle length fluctuations and stabilization of spindle length through the integration of models that span from nanometer to micron scales. This component will lead to the development of a quantitative physical theory of dynamic stabilization of spindle length. Subsequently, the PI will determine the ingredients necessary for bipolar bundle assembly in a minimal model of the fission yeast mitotic spindle. This work will involve computational screens to find regions of model/parameter space associated with self-assembly of a stable spindle-like microtubule bundle and comparison to tomographic models. The effort has a very substantial computational component involving a large-scale modeling framework. The PI intends to make the developed software freely available through an open-source license.
非技术性总结该奖项是根据EAGER的建议,它支持有丝分裂纺锤体长度不稳定性和自组装的生物物理理论的理论研究和教育。 有丝分裂纺锤体是真核细胞骨架的重要组成部分。 它是一种自组装的三维结构,主要由特定蛋白质制成的管组成,它作为一种分子机器在细胞分裂过程中分离染色体。 这项研究计划的最终目标是提供一个基本问题的答案:“有丝分裂纺锤体,一个具有恒定分子周转的非平衡结构,如何能够i)自组装,ii)保持固定长度。“PI打算在从纳米到微米的多个尺度上对纺锤体长度动力学和自组装进行建模,汇集了统计物理学,分子生物物理学,结构,分子和细胞生物学的想法。这项工作有一个非常重要的计算组件,涉及一个大规模的建模框架。 PI打算通过开放源代码许可证免费提供所开发的软件。技术概述细胞自组织和动态生成复杂的三维结构。 长丝成核,聚合和相互作用驱动的重排在空间和时间上进行调节,以构建各种各样的组件。 自组织细胞骨架结构研究中的一个重要问题是如何整合分子水平的知识来预测组装和组织的高阶方面。 一个典型的自组装细胞骨架结构是有丝分裂纺锤体,一个基于微管的机器,在真核细胞分裂过程中分离染色体。 该项目将创建裂变酵母有丝分裂纺锤体的物理理论,概括纺锤体长度稳定性/波动和双极纺锤体组装,以解决具有恒定分子周转率的非平衡结构如何自组装并保持固定长度的基本问题。 该项目有三个组成部分。 PI将首先开发基本的模型成分,包括多种马达/交联,新颖的马达力-速度关系,马达/交联的两阶段结合/解结合,以及动态微管。 然后PI将通过整合从纳米到微米尺度的模型来确定有丝分裂纺锤体长度波动和纺锤体长度稳定的机制。 这一部分将导致发展的定量物理理论的动态稳定的主轴长度。 随后,PI将确定在裂变酵母有丝分裂纺锤体的最小模型中进行双极束组装所需的成分。这项工作将涉及计算屏幕,以找到区域的模型/参数空间与自组装的一个稳定的纺锤状微管束和比较断层模型。 这项工作有一个非常重要的计算组件,涉及一个大规模的建模框架。 PI打算通过开源许可证免费提供所开发的软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meredith Betterton其他文献

Action at a distance along the microtubule couples kinesin motors
  • DOI:
    10.1016/j.bpj.2022.11.2375
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Sithara Wijeratne;Shane A. Fiorenza;Alex Neary;Radhika Subramanian;Meredith Betterton
  • 通讯作者:
    Meredith Betterton
Synthetic Mimics of the Nuclear Pore Complex
  • DOI:
    10.1016/j.bpj.2017.11.3407
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Maguire;Michael Stefferson;Katherine Rainey;Nathan Crossette;Eric Verbeke;Meredith Betterton;Loren Hough
  • 通讯作者:
    Loren Hough

Meredith Betterton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meredith Betterton', 18)}}的其他基金

Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
  • 批准号:
    2133243
  • 财政年份:
    2022
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
  • 批准号:
    2153399
  • 财政年份:
    2022
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and Scalable Methods for Simulation and Data-Driven Modeling of Particulate Flows
协作研究:用于颗粒流模拟和数据驱动建模的稳健且可扩展的方法
  • 批准号:
    1821305
  • 财政年份:
    2018
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Theory of dynamic cytoskeletal length regulation and stabilization
动态细胞骨架长度调节和稳定理论
  • 批准号:
    1725065
  • 财政年份:
    2018
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Hydrodynamic Theories of the Dynamics, Fluctuations, Boundaries, and Shapes of Flocks
合作研究:群体动力学、波动、边界和形状的流体动力学理论
  • 批准号:
    1137822
  • 财政年份:
    2011
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
CAREER: Molecular Motors and Protein Motion: From Mechanisms to Collective Effects
职业:分子马达和蛋白质运动:从机制到集体效应
  • 批准号:
    0847685
  • 财政年份:
    2009
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant

相似海外基金

Uncovering the Underlying Biophysical Mechanisms of Directed Cell Migration
揭示定向细胞迁移的潜在生物物理机制
  • 批准号:
    2345411
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
CAREER: Hydrogeologic implications of permafrost thaw - Developing a process-based understanding of biophysical controls and educational tools for rural communities
职业:永久冻土融化的水文地质影响 - 为农村社区建立对生物物理控制和教育工具的基于过程的理解
  • 批准号:
    2235308
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Continuing Grant
Biophysical Studies of Metalloenzymes
金属酶的生物物理研究
  • 批准号:
    2333907
  • 财政年份:
    2024
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
The influence of biophysical coupling and cross-scale interactions on ecosystems of the Plum Island LTER
生物物理耦合和跨尺度相互作用对普拉姆岛LTER生态系统的影响
  • 批准号:
    2308605
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Standard Grant
Modelling the biophysical barriers to drug delivery in cancer
模拟癌症药物输送的生物物理障碍
  • 批准号:
    2881731
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Studentship
Genetic and biophysical mechanisms that control influenza virus cellular multiplicity of infection
控制流感病毒细胞感染多重性的遗传和生物物理机制
  • 批准号:
    10659426
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
  • 批准号:
    10711723
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
  • 批准号:
    10646999
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
  • 批准号:
    10749273
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
Non-invasive quantitative evaluation of liver diseases using comprehensive biophysical properties database as basis for ultrasound pathology
以综合生物物理特性数据库作为超声病理学基础对肝脏疾病进行无创定量评估
  • 批准号:
    23H03758
  • 财政年份:
    2023
  • 资助金额:
    $ 11.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了