Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
基本信息
- 批准号:10711723
- 负责人:
- 金额:$ 336.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAffectAnimal ModelBiological ModelsBiophysical ProcessBiophysicsBrainBrain DiseasesCalciumCalibrationCellsClinicalClinical TrialsComplementComputer ModelsCoupledCritiquesDataData SetDevelopmentDiseaseElectric StimulationElectrophysiology (science)ElementsEngineeringEpilepsyExhibitsFeedbackFire - disastersFrequenciesFutureHumanImageIndividualKnowledgeLogicMediatingMemory DisordersMental DepressionModelingMusNeural Network SimulationNeuronsOperative Surgical ProceduresOpticsOutcomeOutputParkinson DiseasePatientsPatternPharmacologyPhasePhysiologicalPhysiologyPopulationRampRecurrenceResearchResolutionResourcesRodentRouteSliceStimulusTechniquesTestingTherapeuticTimeTranslatingType I Epithelial Receptor CellWorkWritingawakebiophysical propertiescell typeclinical applicationdensitydesignexperimental studyin vivoinsightmeetingsmicrostimulationnetwork modelsneuralneural stimulationneuromechanismneuropsychiatryneuroregulationnovelnovel therapeuticspatch clamppredictive modelingpreventrecruitresponseside effectstroke recoverytherapeutically effectivetooltranslational approachtwo-photon
项目摘要
Direct local electrical stimulation (DLES) is an increasingly important therapeutic tool for treating brain disorders such as Parkinson’s, epilepsy, and OCD. There is considerable disagreement, however, as to how neural stimulation, especially at the scale of neurons, affects human brain function. This lack of understanding hampers the design and implementation of more effective stimulation approaches, particularly in the cortex. To deliver on the precise, inclusive, and effective therapeutic promise of DLES, a more mechanistic understanding of the biophysics of cortical stimulation is required. This project combines single-cell electrophysiology in both human and mouse cortex, both ex-vivo and in vivo with pharmacology, optical physiology, and sophisticated computational modeling to identify the mechanisms underlying electrical stimulation. In a truly translational approach, these multiple research angles will allow us to test in-depth mechanistic hypotheses in the mouse and whether these results hold true in the human. We will test the hypothesis that DLES induces a dynamic sequence of excitatory (E) neuron output countered by subsequent inhibitory (I) neuron. We will evaluate stimulation intensity, frequency, phase, distance, and species as key parameters in modulating the timing and strength of this E-I dynamic sequence. These data on neuronal dynamics will be leveraged into actionable knowledge through an integrate-and-fire based recurrent neuronal network model which we will use to predict cortical responses to novel stimuli and develop specific stimulation patterns to evoke desired neural outputs. Specifically, we will identify the biophysical mechanisms by which DLES recruits different neuronal populations in acute brain slices of human and mouse cortex using whole-cell electrophysiology and pharmacology (Aim 1). We will then characterize neuron and population responses to DLES in vivo, using Neuropixels probes in awake human and mouse cortex, complemented by optical recordings in the awake mouse (Aim 2). This extensive and detailed data set will be used to refine and validate a trainable neural network model we have developed to assess stimulation effects on E and I cell types (Aim 3). The model will be the testing ground to develop specific patterns of stimulation based on desired outputs such as targeting either E or I cells. The model will also be used to test novel input stimuli including amplitude and frequency ramps, chirps, and step functions to predict neural responses. Testing these model-predicted outputs, or responses, will then be carried out through further ex- and in-vivo physiology. Not only will we connect dynamics of a primary model system to activity in the human brain, but this work will also provide a unique route toward predictable modulation of activity in individual neurons and local circuits to design tailored neuromodulation therapies. Our multi-scale analyses of the neural mechanisms of electrical stimulation will catalyze novel, targeted, and mechanistically driven therapeutic approaches that could revolutionize stimulation-based treatment for memory disorders, depression, stroke recovery, and a host of other neuropsychiatric ailments.
直接局部电刺激(DLES)是一种越来越重要的治疗工具,用于治疗大脑疾病,如帕金森氏症,癫痫和强迫症。然而,关于神经刺激,特别是神经元的刺激,如何影响人脑功能,存在相当大的分歧。这种缺乏理解阻碍了更有效的刺激方法的设计和实施,特别是在皮层中。为了实现DLES的精确、包容和有效的治疗承诺,需要对皮层刺激的生物物理学有更机械的理解。该项目结合了人类和小鼠皮层的单细胞电生理学,体外和体内药理学,光学生理学和复杂的计算建模,以确定电刺激的机制。在真正的转化方法中,这些多个研究角度将使我们能够在小鼠中测试深入的机制假设,以及这些结果是否适用于人类。我们将测试的假设,DLES诱导一个动态序列的兴奋性(E)神经元输出随后抑制(I)神经元反击。我们将评估刺激强度、频率、相位、距离和种类作为调节E-I动态序列的时间和强度的关键参数。这些关于神经元动力学的数据将通过基于整合和激发的递归神经元网络模型被利用为可操作的知识,我们将使用该模型来预测皮质对新刺激的反应,并开发特定的刺激模式以唤起所需的神经输出。具体来说,我们将确定DLES招募不同的神经元群体在急性脑切片的人类和小鼠皮质使用全细胞电生理学和药理学(目的1)的生物物理机制。然后,我们将在清醒的人类和小鼠皮层中使用Neuropixels探针,并在清醒的小鼠中进行光学记录,以表征神经元和群体对DLES的体内反应(目的2)。这个广泛而详细的数据集将用于改进和验证我们开发的可训练神经网络模型,以评估对E和I细胞类型的刺激效果(目标3)。该模型将是基于所需输出(如靶向E或I细胞)开发特定刺激模式的试验场。该模型还将用于测试新的输入刺激,包括幅度和频率斜坡,啁啾和阶跃函数,以预测神经反应。然后将通过进一步的体外和体内生理学来测试这些模型预测的输出或响应。我们不仅将主要模型系统的动力学与人类大脑的活动联系起来,而且这项工作还将为个体神经元和局部电路的活动的可预测调制提供独特的途径,以设计定制的神经调制疗法。我们对电刺激神经机制的多尺度分析将催化新的、有针对性的和机械驱动的治疗方法,这些方法可以彻底改变基于刺激的记忆障碍、抑郁症、中风恢复和许多其他神经精神疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SYDNEY S CASH其他文献
SYDNEY S CASH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SYDNEY S CASH', 18)}}的其他基金
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
- 批准号:
10630883 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Establishing a Brain Health Index from the Sleep Electroencephalogram
从睡眠脑电图建立大脑健康指数
- 批准号:
10180268 - 财政年份:2021
- 资助金额:
$ 336.02万 - 项目类别:
Understanding the Fast and Slow Spatiotemporal Dynamics of Human Seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10584583 - 财政年份:2019
- 资助金额:
$ 336.02万 - 项目类别:
Understanding the fast and slow spatiotemporal dynamics of human seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10361503 - 财政年份:2019
- 资助金额:
$ 336.02万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9318585 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
Seizure focus delineation using spontaneous and stimulus evoked EEG features
使用自发和刺激诱发的脑电图特征描绘癫痫病灶
- 批准号:
8891148 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9116972 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)