Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization

合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论

基本信息

  • 批准号:
    2153399
  • 负责人:
  • 金额:
    $ 24.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

For life to proliferate, cells must faithfully divide their genetic material equally into two new daughter cells during cell division. The highly dynamic bipolar mitotic spindle, built from protein filaments called microtubules, is the cellular machine needed to accomplish this essential task. Errors in the spindle assembly process have been linked to diseases such as cancer. A critical initial step in building the spindle involves the separation of duplicated centrosomes that form the spindle poles. This involves a variety of proteins that bind and generate a force on the microtubules. While the mechanical interplay is complex, the relevant factors appear small enough in number that their collective action can be analyzed in precise biophysical terms. This project will combine biophysical laboratory experiments, computational physical models, and statistical parameterization frameworks in order to build detailed understanding of how spindle formation is affected by the interaction of the diverse protein components. Methodologically, the research aims to coherently evolve a physically interpretable structural theory of early spindle formation that is built bottom-up with clear linkages between stages of complexity. Additionally, the research team from mathematical sciences, biology, and physics will develop educational outreach activities for students at the universities and local high schools, emphasizing how collaborative methodologies from mathematics, physics, and biology can be deployed to better understand vital processes in the life sciences.The key technical novelty of this project will be the construction of a mesoscale kinetic theory framework. The framework will treat the spindle and associated protein concentrations through statistical summaries and be parameterized in increasing stages of complexity through in vitro experimental configurations designed for this project. The theoretical model will be developed through interaction with computational simulations and newly proposed in vitro experiments involving microtubule bundles with virtual asters in simplified geometries, probed by optical tweezers. The project will exploit the coarse-grains existing kinetic theory to model crosslinker-mediated interactions between pairs of microtubules to aligned and non-aligned bundles of microtubules. A reduced statistical description will be sought relative to highly detailed kinetic theories and direct simulation based on a detailed accounting of individual crosslinkers and microtubules. The research will identify and exploit key collective variables for a more computationally tractable and transparent connection between regulatory and environmental factors and the resulting spindle dynamics, which can aid in generating hypotheses for future experiments. The graded complexity integration process will enable interrogation of and corrections to physical assumptions regarding understanding how crosslinker behavior for microtubule pairs scales up quantitatively to microtubule bundles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了使生命增殖,细胞必须在细胞分裂过程中忠实地将其遗传物质均等地分裂成两个新的子细胞。高度动态的双极有丝分裂纺锤体,由称为微管的蛋白质细丝构成,是完成这一基本任务所需的细胞机器。纺锤体组装过程中的错误与癌症等疾病有关。构建纺锤体的关键初始步骤包括分离形成纺锤体极的重复中心体。这涉及到结合并在微管上产生力的各种蛋白质。虽然机械相互作用是复杂的,但相关因素似乎足够小,可以用精确的生物物理术语分析它们的集体作用。该项目将结合联合收割机生物物理实验室实验,计算物理模型和统计参数化框架,以建立详细的了解如何纺锤体的形成是由不同的蛋白质组分的相互作用的影响。从方法论上讲,该研究旨在连贯地发展一种物理上可解释的早期纺锤体形成结构理论,该理论是自下而上建立的,在复杂性的各个阶段之间有着明确的联系。此外,数学、生物、物理的研究团队还将为大学和当地高中的学生开展教育推广活动,强调如何利用数学、物理、生物的协作方法更好地理解生命科学中的重要过程。本项目的关键技术新奇将是构建中尺度动力学理论框架。该框架将通过统计总结处理纺锤体和相关蛋白质浓度,并通过为本项目设计的体外实验配置在复杂性增加的阶段进行参数化。理论模型将通过与计算模拟和新提出的体外实验相互作用来开发,这些实验涉及具有简化几何形状的虚拟星状体的微管束,通过光镊探测。该项目将利用现有的粗颗粒动力学理论来模拟交联剂介导的微管对对齐和非对齐的微管束之间的相互作用。相对于高度详细的动力学理论和基于单个交联剂和微管的详细计算的直接模拟,将寻求简化的统计描述。该研究将确定和利用关键的集体变量,以便在监管和环境因素以及由此产生的纺锤体动态之间建立更易于计算和透明的联系,这有助于为未来的实验产生假设。分级复杂性集成过程将使询问和纠正的物理假设,了解如何交联剂行为的微管对规模定量的微管bundle.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meredith Betterton其他文献

Action at a distance along the microtubule couples kinesin motors
  • DOI:
    10.1016/j.bpj.2022.11.2375
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Sithara Wijeratne;Shane A. Fiorenza;Alex Neary;Radhika Subramanian;Meredith Betterton
  • 通讯作者:
    Meredith Betterton
Synthetic Mimics of the Nuclear Pore Complex
  • DOI:
    10.1016/j.bpj.2017.11.3407
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Maguire;Michael Stefferson;Katherine Rainey;Nathan Crossette;Eric Verbeke;Meredith Betterton;Loren Hough
  • 通讯作者:
    Loren Hough

Meredith Betterton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meredith Betterton', 18)}}的其他基金

Collaborative Research: MODULUS: Nuclear envelope shape change coordination with chromosome segregation in mitosis in fission yeast
合作研究:MODULUS:核膜形状变化与裂殖酵母有丝分裂中染色体分离的协调
  • 批准号:
    2133243
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and Scalable Methods for Simulation and Data-Driven Modeling of Particulate Flows
协作研究:用于颗粒流模拟和数据驱动建模的稳健且可扩展的方法
  • 批准号:
    1821305
  • 财政年份:
    2018
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
Theory of dynamic cytoskeletal length regulation and stabilization
动态细胞骨架长度调节和稳定理论
  • 批准号:
    1725065
  • 财政年份:
    2018
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
EAGER: Biophysical Theory of Mitotic Spindle Length Instability and Self Assembly
EAGER:有丝分裂纺锤体长度不稳定性和自组装的生物物理理论
  • 批准号:
    1551095
  • 财政年份:
    2015
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Hydrodynamic Theories of the Dynamics, Fluctuations, Boundaries, and Shapes of Flocks
合作研究:群体动力学、波动、边界和形状的流体动力学理论
  • 批准号:
    1137822
  • 财政年份:
    2011
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
CAREER: Molecular Motors and Protein Motion: From Mechanisms to Collective Effects
职业:分子马达和蛋白质运动:从机制到集体效应
  • 批准号:
    0847685
  • 财政年份:
    2009
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347957
  • 财政年份:
    2024
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347956
  • 财政年份:
    2024
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
  • 批准号:
    10797460
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
  • 批准号:
    10797410
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
RUI: Collaborative Research: DMS/NIGMS 1: The mathematical laws of morphology and biomechanics through ontogeny
RUI:合作研究:DMS/NIGMS 1:通过个体发育的形态学和生物力学的数学定律
  • 批准号:
    2152792
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153520
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Collaborative Research: Advanced Ion Channel Modeling and Computational Tools with Application to Voltage-Dependent Anion Channel and Mitochondrial Model Development
DMS/NIGMS 1:合作研究:先进离子通道建模和计算工具,应用于电压依赖性阴离子通道和线粒体模型开发
  • 批准号:
    2153387
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers from and for Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:推进统计基础和前沿,应对新出现的天文数据挑战
  • 批准号:
    EP/W015080/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了