CAREER: Machine Learning-Based Approaches Toward Combatting Abusive Behavior in Online Communities

职业:基于机器学习的方法来打击在线社区中的虐待行为

基本信息

  • 批准号:
    1553376
  • 负责人:
  • 金额:
    $ 54.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This research aims to computationally model abusive online behavior to build tools that help counter it, with the goal of making the Internet a more welcoming place. Since its earliest days, flaming, trolling, harassment and abuse have plagued the Internet. This project will lay bare the structure of online abuse over many types of online conversations, a major step forward for the study of computer-mediated communication. This will result from modeling abuse with statistical machine learning algorithms as a function of theoretically inspired, sociolinguistic variables, and will entail new technical and methodological advances. This work will enable a transformative new class of automated and semi-automated applications that depend on computationally generated abuse predictions. The education and outreach plan is deeply tied to the research activities, and focuses on scaling-up the research's broader impacts. A public application programming interface (API) will enable developers and online community managers around the world to integrate into their own sites the defenses against abuse developed by this research.The work will consist of two major phases. In the first, the research will develop a deep understanding of abusive online behavior via statistical machine learning techniques. Specifically, the work will appropriate theories from social science and linguistics to inform the creation of features for robust statistical machine learning algorithms to predict abuse. These proposed abuse models will enable a brand new, transformative class of mixed-initiative artifacts capable of intervening in social media and online communities. In the second phase, this project will explore this newly enabled class of artifacts by building, deploying and evaluating sociotechnical tools for combatting abuse. Specifically, it will explore two classes of tools that use the abuse predictions: shields and moderator tools. The first, shields, will proactively block inbound abuse from reaching people. The second class of tools, moderator tools, will flag and triage abuse for community moderators.
这项研究的目的是通过计算建模滥用在线行为,以建立有助于对抗它的工具,目的是使互联网成为一个更受欢迎的地方。 从最早的时候起,燃烧,拖钓,骚扰和虐待就一直困扰着互联网。该项目将揭示多种类型的在线对话中的在线滥用结构,这是计算机介导通信研究的重要一步。这将是由于使用统计机器学习算法作为理论启发的社会语言学变量的函数来建模滥用,并将带来新的技术和方法上的进步。这项工作将使一个变革性的新一类自动化和半自动化的应用程序,依赖于计算生成的滥用预测。教育和推广计划与研究活动密切相关,重点是扩大研究的广泛影响。 一个公共应用程序编程接口(API)将使世界各地的开发人员和在线社区管理人员能够将本研究开发的防滥用措施集成到自己的网站中。首先,该研究将通过统计机器学习技术深入了解滥用在线行为。具体来说,这项工作将采用社会科学和语言学的理论,为强大的统计机器学习算法创建功能,以预测滥用行为。这些拟议的滥用模型将使一个全新的,变革性的混合主动工件类能够干预社交媒体和在线社区。在第二阶段,该项目将通过构建、部署和评估用于打击虐待的社会技术工具来探索这类新启用的工件。具体来说,它将探讨两类使用滥用预测的工具:盾牌和仲裁员工具。第一个是盾牌,它将主动阻止传入的滥用到达人们。第二类工具,版主工具,将为社区版主标记和分类滥用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Gilbert其他文献

The Internet ’ s Hidden Rules 32 : 3 Phase 1 : Data Collection Phase 3 : ClusteringPhase 2 : Classi cation Phase
互联网的潜规则 32 : 3 第 1 阶段:数据收集 第 3 阶段:聚类 第 2 阶段:分类阶段
Open Book: A Socially-inspired Cloaking Technique that Uses Lexical Abstraction to Transform Messages
Open Book:一种受社会启发的伪装技术,利用词汇抽象来转换消息
Popup Networks: Creating Decentralized Social Media on Top of Commodity Wireless Routers
Popup Network:在商品无线路由器之上创建去中心化社交媒体
Political blend: an application designed to bring people together based on political differences
政治融合:旨在根据政治差异将人们聚集在一起的应用程序
Virtual data Grid middleware services for data‐intensive science
用于数据密集型科学的虚拟数据网格中间件服务
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong Zhao;M. Wilde;Ian T Foster;Jens;J. Dobson;Eric Gilbert;Thomas H. Jordan;Elizabeth Quigg
  • 通讯作者:
    Elizabeth Quigg

Eric Gilbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Gilbert', 18)}}的其他基金

CAREER: Machine Learning-Based Approaches Toward Combatting Abusive Behavior in Online Communities
职业:基于机器学习的方法来打击在线社区中的虐待行为
  • 批准号:
    1832811
  • 财政年份:
    2017
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
SoCS: Collaborative Research: Novel Algorithms and Interaction Mechanisms to Enhance Social Production
SoCS:协作研究:增强社会生产的新颖算法和交互机制
  • 批准号:
    1212338
  • 财政年份:
    2012
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 54.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了