CAREER: Generative Programming and DSLs for Safe Performance Critical Systems

职业:用于安全性能关键系统的生成式编程和 DSL

基本信息

  • 批准号:
    1553471
  • 负责人:
  • 金额:
    $ 51.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Most performance critical software is developed using very low-level techniques, close to the underlying hardware. But low-level code in unsafe languages attracts security vulnerabilities, developer productivity suffers without the software engineering benefits of higher-level languages, and in the age of heterogeneous hardware and big data workloads, a single hand-optimized codebase may no longer provide good performance across different target platforms. Generative programming is a radical rethinking of the role of high-level languages and low-level languages. Instead of running whole systems in a high-level managed language runtime, the idea is to focus the abstraction power of high-level languages on composing pieces of low-level code, making runtime code generation and domain-specific optimization a fundamental part of the program logic. This project will conduct a fundamental study of generative design patterns, which will be extracted from existing and emerging program generators and domain-specific languages. The intellectual merits are a deeper understanding of how to develop software in a generative style. The project's broader significance and importance are to establish generative programming as a part of every performance-minded programmer?s toolbox, enabling the use of high-level programming in more situations than currently possible.Generative programming, and the shift in perspective that goes along with it, has been shown to be extremely effective in areas like databases (query compilation), protocol and data format parsers, hardware circuit generation, signal processing kernels, machine learning, and big data processing on heterogeneous computing devices?traditional strongholds of low-level languages. But while the general idea of program generation is well understood, the technique has remained esoteric?a black art, accessible only to the most skilled and daring of programmers. What is missing is a discipline of practical generative programming, including design patterns, best practices and so on. To achieve these broader goals, the project includes an education program, which, driven by the project?s research, will teach generative programming to a wide audience of students and developers in industry. This education effort will also serve as a large-scale usability study, closing the feedback loop into the research on generative programming techniques.
大多数性能关键软件都是使用非常低级的技术开发的,接近底层硬件。但是,不安全语言中的低级代码会引起安全漏洞,开发人员的生产力会受到影响,而没有高级语言的软件工程优势,并且在异构硬件和大数据工作负载的时代,单一手工优化的代码库可能不再能够在不同的目标平台上提供良好的性能。生成式编程是对高级语言和低级语言角色的彻底反思。不是在高级托管语言运行时中运行整个系统,而是将高级语言的抽象能力集中在组成低级代码片段上,使运行时代码生成和特定于域的优化成为程序逻辑的基本部分。 该项目将对生成式设计模式进行基础研究,这些模式将从现有和新兴的程序生成器和特定领域的语言中提取。智力上的优点是对如何以生成式风格开发软件有了更深入的理解。该项目更广泛的意义和重要性是将生成式编程作为每个注重性能的程序员的一部分。生成式编程以及与之相伴的视角转变沿着被证明在数据库(查询编译)、协议和数据格式解析器、硬件电路生成、信号处理内核、机器学习和异构计算设备上的大数据处理等领域非常有效。低级语言的传统据点但是,虽然程序生成的一般思想是很好地理解,技术仍然是深奥的?这是一种只有最熟练和最大胆的程序员才能接触到的黑色艺术。缺少的是实用生成式编程的学科,包括设计模式、最佳实践等。为了实现这些更广泛的目标,该项目包括一个教育计划,该计划由项目驱动?的研究,将教授生成编程,以广大观众的学生和开发人员在行业。这项教育工作也将作为一个大规模的可用性研究,关闭反馈循环到生成式编程技术的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiark Rompf其他文献

Spiral in scala: towards the systematic construction of generators for performance libraries
scala 中的螺旋:面向性能库生成器的系统构建
  • DOI:
    10.1145/2517208.2517228
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georg Ofenbeck;Tiark Rompf;A. Stojanov;Martin Odersky;Markus Püschel
  • 通讯作者:
    Markus Püschel
Reflections on LMS: exploring front-end alternatives
对 LMS 的思考:探索前端替代方案
Staged parser combinators for efficient data processing
用于高效数据处理的分阶段解析器组合器
Modeling Reachability Types with Logical Relations
使用逻辑关系对可达性类型进行建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuyan Bao;Guannan Wei;Oliver Bračevac;Tiark Rompf
  • 通讯作者:
    Tiark Rompf
The Essence of Multi-stage Evaluation in LMS
LMS 多阶段评估的本质

Tiark Rompf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiark Rompf', 18)}}的其他基金

FMitF: Track I: Symbolic Reasoning with Graph Networks
FMITF:第一轨:图网络的符号推理
  • 批准号:
    1918483
  • 财政年份:
    2019
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: From Volume to Velocity: Big Data Analytics in Near-Realtime
SHF:媒介:协作研究:从数量到速度:近实时的大数据分析
  • 批准号:
    1564207
  • 财政年份:
    2016
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Standard Grant

相似海外基金

Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
  • 批准号:
    DP240102559
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Discovery Projects
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Research Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Standard Grant
Assessments for writing with generative artificial intelligence
使用生成人工智能进行写作评估
  • 批准号:
    DP240100069
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Discovery Projects
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
  • 批准号:
    24K04103
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SeparateSpace: Leveraging generative AI to help separating families who are underserved or excluded by the way family law support is currently delivered.
SeparateSpace:利用生成式人工智能来帮助分离那些因目前提供家庭法支持的方式而服务不足或被排除在外的家庭。
  • 批准号:
    10100497
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Collaborative R&D
AI HUB IN GENERATIVE MODELS
生成模型中的 AI 中心
  • 批准号:
    EP/Y028805/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Research Grant
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 51.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了