FMitF: Track I: Symbolic Reasoning with Graph Networks

FMITF:第一轨:图网络的符号推理

基本信息

  • 批准号:
    1918483
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Despite the success of deep neural networks in image recognition, speech recognition, and machine translation, big challenges remain in applying deep-learning techniques to applications that require symbolic forms of reasoning -- in particular, proving theorems in various kinds of logics. The main challenge is one of representation. In image recognition, advances are driven to a large extent by convolutional neural networks, a variation of deep learning, which exploit neighborhood relations inherent in a pixel grid. This representation has also turned out to work very well for two-dimensional game boards: combined with reinforcement-learning, variants of convolutional neural networks are employed by famous gameplay systems, including DeepMind's original Atari engine and more recently AlphaGo and AlphaZero. These techniques do not apply as well to symbolic terms and formulae often used to represent logical reasoning, however, because these constructs lack the same data-rich structure and neighborhood relations. Although it is tempting to draw analogies between game moves and such formulae, significant challenges remain in determining how to build upon the advances made in the domains of gameplay and extend them to symbolic-reasoning problems.The project addresses this representation challenge through a novel notion of neural term-graphs to represent formulae and intermediate states of symbolic formula manipulation within a reinforcement-learning framework. The project will conduct a fundamental study of gameplay-inspired machine-learning approaches to symbolic-reasoning problems, including boolean satisfiability (SAT), quantified boolean formulae (QBF), and first-order logic (FOL). The project will further connect these symbolic reasoning domains with statistical relational learning, and explore their application in the domains of explainable AI and adversarial inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管深度神经网络在图像识别、语音识别和机器翻译方面取得了成功,但在将深度学习技术应用于需要符号形式推理的应用方面仍然存在巨大挑战,特别是在各种逻辑中证明定理。主要的挑战是代表性问题。 在图像识别中,进步在很大程度上是由卷积神经网络驱动的,卷积神经网络是深度学习的一种变体,它利用了像素网格中固有的邻域关系。这种表示方法也被证明对二维游戏板非常有效:结合并行学习,卷积神经网络的变体被著名的游戏系统所采用,包括DeepMind最初的Atari引擎以及最近的AlphaGo和AlphaZero。然而,这些技术并不适用于通常用于表示逻辑推理的符号术语和公式,因为这些构造缺乏相同的数据丰富的结构和邻域关系。 虽然这是诱人的游戏动作和这样的公式之间的类比,重大的挑战仍然存在于确定如何建立在游戏领域取得的进展,并将其扩展到符号推理problems.The项目通过一个新的概念,神经项图来表示公式和符号公式操作的中间状态的学习框架内,解决了这一表示的挑战。该项目将对游戏启发的机器学习方法进行基础研究,以解决符号推理问题,包括布尔可满足性(SAT),量化布尔公式(QBF)和一阶逻辑(FOL)。该项目将进一步将这些符号推理领域与统计关系学习联系起来,并探索它们在可解释人工智能和对抗性推理领域的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks for Learning Counterfactual G-Invariances from Single Environments
用于从单一环境中学习反事实 G 不变性的神经网络
Explaining classification performance and bias via network structure and sampling technique
  • DOI:
    10.1007/s41109-021-00394-3
  • 发表时间:
    2021-10-21
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Espin-Noboa, Lisette;Karimi, Fariba;Wagner, Claudia
  • 通讯作者:
    Wagner, Claudia
Graph IRs for Impure Higher-Order Languages: Making Aggressive Optimizations Affordable with Precise Effect Dependencies
非纯高阶语言的图 IR:通过精确的效果依赖性使积极的优化变得经济实惠
  • DOI:
    10.1145/3622813
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bračevac, Oliver;Wei, Guannan;Jia, Songlin;Abeysinghe, Supun;Jiang, Yuxuan;Bao, Yuyan;Rompf, Tiark
  • 通讯作者:
    Rompf, Tiark
Xatu: Richer Neural Network Based Prediction for Video Streaming
Sequential stratified regeneration: MCMC for large state spaces with an application to subgraph count estimation
  • DOI:
    10.1007/s10618-021-00802-3
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Carlos H. C. Teixeira;Mayank Kakodkar;Vinícius Dias;Wagner Meira Jr;Bruno Ribeiro
  • 通讯作者:
    Carlos H. C. Teixeira;Mayank Kakodkar;Vinícius Dias;Wagner Meira Jr;Bruno Ribeiro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiark Rompf其他文献

Spiral in scala: towards the systematic construction of generators for performance libraries
scala 中的螺旋:面向性能库生成器的系统构建
  • DOI:
    10.1145/2517208.2517228
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georg Ofenbeck;Tiark Rompf;A. Stojanov;Martin Odersky;Markus Püschel
  • 通讯作者:
    Markus Püschel
Reflections on LMS: exploring front-end alternatives
对 LMS 的思考:探索前端替代方案
Staged parser combinators for efficient data processing
用于高效数据处理的分阶段解析器组合器
Modeling Reachability Types with Logical Relations
使用逻辑关系对可达性类型进行建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuyan Bao;Guannan Wei;Oliver Bračevac;Tiark Rompf
  • 通讯作者:
    Tiark Rompf
The Essence of Multi-stage Evaluation in LMS
LMS 多阶段评估的本质

Tiark Rompf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiark Rompf', 18)}}的其他基金

SHF: Medium: Collaborative Research: From Volume to Velocity: Big Data Analytics in Near-Realtime
SHF:媒介:协作研究:从数量到速度:近实时的大数据分析
  • 批准号:
    1564207
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: Generative Programming and DSLs for Safe Performance Critical Systems
职业:用于安全性能关键系统的生成式编程和 DSL
  • 批准号:
    1553471
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了