CAREER: Coupling Spin, Light, and Charge for Quantum Information Processing and Storage in Diamond

职业:耦合自旋、光和电荷,用于钻石中的量子信息处理和存储

基本信息

  • 批准号:
    1553511
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Nontechnical description:Atom-scale defects in semiconductors -long the bane of conventional integrated electronic devices - could actually form the basis for new generations of devices that harness quantum mechanical effects to achieve transformational new functionalities. Select types of impurities, known as defect spins, exhibit desirable quantum features in room-temperature devices amenable to integration and miniaturization. These defects respond to electric, magnetic, and optical fields, and they can be embedded in biocompatible nanoparticles to serve as quantum probes with nanometer precision. The purpose of this CAREER project is to explore new ways to control defect spins in diamond, in order to realize practical technologies for quantum information processing and quantum sensing. Specifically, this project aims to (i) demonstrate a new approach to probing diamond spins with light that dramatically boosts their functionality as quantum bits and quantum probes and (ii) isolate and manipulate coupled impurity spins that could serve as quantum memory bits with lifetimes measured in days at room temperature, improving over the state of the art by many orders of magnitude. These elements will form critical components for quantum computers, secure quantum communication links, and other chip-scale quantum technologies. The project further incorporates broad educational goals to promote the emerging domain of quantum engineering, which breaks traditional boundaries between disciplines such as atomic and solid-state physics, electrical engineering, materials science, chemistry, and biology. It will support the construction and deployment of hands-on demonstrations of quantum coherence, in which K-12 students and the general public can actually see quantum physics with their naked eyes in room-temperature devices. Technical description:Defect spins such as the nitrogen-vacancy (NV) in diamond have clear potential as building blocks for future quantum technologies, but several key challenges impede the development of practical devices. Existing approaches to couple diamond NV spins with single photons require liquid helium temperatures (10 K), and they are so far incompatible with integrated photonics. Furthermore, nanoscale sensing capabilities are limited by the standard optical readout mechanism for NV spins that requires averaging repeated measurements, which is woefully inefficient. This project will address these challenges by leveraging the complex interplay of charge, orbital, optical, and spin dynamics in diamond impurities. A new technique to achieve all-optical, single-shot NV spin readout at room temperature will facilitate applications including quantum-limited sensing of local fields, probing quantum correlations between multiple spins, and sensing stochastic signals (e.g., neuron activity) that cannot be repetitively acquired. In parallel, investigations of spin and charge dynamics in coupled defect-donor spin systems aim to establish an optically-addressable quantum memory with room-temperature coherence times measured in days, which will enable secure communication technologies including quantum money and quantum repeaters.
非技术性描述:半导体中的原子级缺陷--长期以来一直是传统集成电子器件的祸根--实际上可能构成新一代器件的基础,这些器件利用量子力学效应实现变革性的新功能。 被称为缺陷自旋的特定类型的杂质在适于集成和小型化的室温设备中表现出理想的量子特性。 这些缺陷会对电场、磁场和光场产生响应,它们可以嵌入生物相容性纳米颗粒中,作为纳米精度的量子探针。 该CAREER项目的目的是探索控制金刚石中缺陷自旋的新方法,以实现量子信息处理和量子传感的实用技术。具体而言,该项目旨在(i)展示一种用光探测金刚石自旋的新方法,该方法可以显着提高它们作为量子位和量子探针的功能,以及(ii)隔离和操纵耦合杂质自旋,这些自旋可以作为量子存储位,其寿命在室温下以天为单位测量,比现有技术提高了许多数量级。这些元素将成为量子计算机、安全量子通信链路和其他芯片级量子技术的关键组件。 该项目进一步纳入了广泛的教育目标,以促进量子工程的新兴领域,打破了原子和固态物理,电气工程,材料科学,化学和生物学等学科之间的传统界限。它将支持构建和部署量子相干性的实践演示,其中K-12学生和公众可以在室温设备中用肉眼看到量子物理。缺陷自旋,如金刚石中的氮空位(NV),显然有潜力成为未来量子技术的基石,但几个关键挑战阻碍了实际设备的开发。 现有的方法耦合金刚石NV自旋与单光子需要液氦温度(10 K),他们是迄今为止与集成光子不兼容。 此外,纳米级感测能力受到NV自旋的标准光学读出机制的限制,其需要平均重复测量,这是非常低效的。 该项目将通过利用钻石杂质中电荷、轨道、光学和自旋动力学的复杂相互作用来解决这些挑战。在室温下实现全光学、单次NV自旋读出的新技术将促进包括局部场的量子限制感测、探测多个自旋之间的量子相关性以及感测随机信号(例如,神经元活动)不能重复获得。与此同时,对耦合缺陷-施主自旋系统中自旋和电荷动力学的研究旨在建立一种光学可寻址的量子存储器,其室温相干时间以天为单位测量,这将使包括量子货币和量子中继器在内的安全通信技术成为可能。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A monolithic immersion metalens for imaging solid-state quantum emitters
  • DOI:
    10.1038/s41467-019-10238-5
  • 发表时间:
    2019-06-03
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Huang, Tzu-Yung;Grote, Richard R.;Bassett, Lee C.
  • 通讯作者:
    Bassett, Lee C.
Real-Time Charge Initialization of Diamond Nitrogen-Vacancy Centers for Enhanced Spin Readout
  • DOI:
    10.1103/physrevapplied.13.024016
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hopper, David A.;Lauigan, Joseph D.;Bassett, Lee C.
  • 通讯作者:
    Bassett, Lee C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LEE BASSETT其他文献

LEE BASSETT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LEE BASSETT', 18)}}的其他基金

DMREF: Collaborative Research: Systematic Discovery of Materials Platforms for Spin-Light Quantum Interfaces
DMREF:协作研究:自旋光量子界面材料平台的系统发现
  • 批准号:
    1922278
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
  • 批准号:
    1842655
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Structural Control of Spin-Orbit Coupling
职业:自旋轨道耦合的结构控制
  • 批准号:
    2046020
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Electron and Spin Dynamics in Materials with Spin-Orbit Coupling
职业:具有自旋轨道耦合的材料中的第一原理电子和自旋动力学
  • 批准号:
    1750613
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Two-dimensional Van Der Waals systems with tunable spin-orbit coupling
职业:具有可调自旋轨道耦合的二维范德华系统
  • 批准号:
    1455233
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Study of Emergent Ground States and Bosonic Excitations in Materials with Strong Spin-Lattice Coupling
职业:强自旋晶格耦合材料中的新兴基态和玻色子激发的研究
  • 批准号:
    1455264
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Interplay of topology and geometry in materials with strong spin-orbit coupling
职业:具有强自旋轨道耦合的材料中拓扑和几何的相互作用
  • 批准号:
    1351895
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Emergent Phases of Correlated Electrons in Materials with Spin-Orbit Coupling and Magnetic Frustration
职业:具有自旋轨道耦合和磁挫败的材料中相关电子的涌现相
  • 批准号:
    1511768
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Emergent Phases of Correlated Electrons in Materials with Spin-Orbit Coupling and Magnetic Frustration
职业:具有自旋轨道耦合和磁挫败的材料中相关电子的涌现相
  • 批准号:
    1255544
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Imaging Excitons, Spin Coupling and Magnetism in Discotic Crystalline Organic Semiconductors
职业:盘状晶体有机半导体中的激子、自旋耦合和磁性成像
  • 批准号:
    1056589
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Integrated Research and Education to Probe Coherent and Quantum States in the Presence of Strong Spin-Orbit Coupling
职业:综合研究和教育,在强自旋轨道耦合的情况下探测相干态和量子态
  • 批准号:
    0846834
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Research and Education in Development of Organic Spintronics Based on Spin Injection and Modification of Spin-Orbital Coupling in Magnetic Organic Light-Emitting Diodes
职业:基于磁性有机发光二极管中自旋注入和自旋轨道耦合修饰的有机自旋电子学发展的研究和教育
  • 批准号:
    0644945
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了