DMREF: Collaborative Research: Systematic Discovery of Materials Platforms for Spin-Light Quantum Interfaces
DMREF:协作研究:自旋光量子界面材料平台的系统发现
基本信息
- 批准号:1922278
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Certain types of defects in solids - for example, an isolated impurity atom, or a vacancy where an atom is missing from the crystal - act like trapped molecules whose quantum-mechanical states can be controlled through use of light and electronics. Such defects are employed today as the basis for emerging applications in quantum information science, especially as single-photon sources, quantum memories, and quantum sensors. However, only a small number of potential defect systems, within a limited set of host materials, have been explored for this purpose, and those systems have specific properties that are not optimal for every application. Alternative defects, potentially occurring in materials that have been largely ignored, offer potential advantages, but the identification and development of new quantum defects has historically been a slow and arduous process. The goal of this DMREF project is to dramatically accelerate the discovery process for quantum defects in solids, by combining new computational and experimental techniques in an efficient paradigm inspired by the Materials Genome Initiative. The collaborating researchers will predict the basic properties of defects in a large number of materials, identify those systems best suited for the application at hand, fabricate and identify the target defects using high-throughput experimental methods, and establish their potential for applications in quantum science, especially as "spin-light interfaces" that will serve as the basis for future quantum networks. The research project will prepare multiple graduate and undergraduate students for future employment in the quantum workforce, and its outreach programs will introduce concepts of quantum science and technology to the general public through virtual and in-person activities. Technical description: Point defects in wide-bandgap semiconductors have emerged as leading platforms for quantum information science and technology, because they host isolated electron and nuclear spin states that can be addressed optically and electronically for use as qubits and quantum sensors. However, most research to date has concentrated on only a few defect systems and host materials, and the identification of new defect systems has been a slow, arduous, and generally ad hoc process. Given the vast number of potential materials and defect configurations, it remains a major challenge to theoretically predict and experimentally identify promising candidates in a systematic way. This collaborative DMREF project will address this challenge by combining new computational and experimental techniques to accelerate the discovery of defects, dopants, and host materials optimized for spin-light quantum interfaces. Computationally efficient analytic group theory-based models supported by judicious use of ab initio and low-energy numerical calculations will facilitate the systematic discovery of electronic systems with desired properties, while novel high-throughput single-emitter spectroscopy techniques will enable rapid experimental characterization. The immediate goal of the project is to identify previously unexplored spin systems that support coherent spin-photon interfaces at or near room temperature, using state-of-the art techniques for quantum dynamical control. More broadly, the ability to select defects that satisfy particular materials and application requirements will revolutionize solid-state quantum engineering and lead to diverse new applications of quantum science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:固体中的某些类型的缺陷-例如,一个孤立的杂质原子,或晶体中缺少一个原子的空位-就像被困的分子,其量子力学状态可以通过使用光和电子来控制。这些缺陷今天被用作量子信息科学中新兴应用的基础,特别是作为单光子源,量子存储器和量子传感器。然而,只有少数的潜在缺陷系统,在一组有限的主体材料,已被探索用于此目的,这些系统具有特定的属性,并不是最佳的每一个应用。在很大程度上被忽视的材料中可能发生的替代缺陷提供了潜在的优势,但新量子缺陷的识别和开发历来是一个缓慢而艰巨的过程。这个DMREF项目的目标是通过将新的计算和实验技术结合在材料基因组计划启发的有效范例中,大大加快固体中量子缺陷的发现过程。合作研究人员将预测大量材料中缺陷的基本性质,确定最适合手头应用的系统,使用高通量实验方法制造和识别目标缺陷,并确定其在量子科学中的应用潜力,特别是作为“自旋光接口”,将作为未来量子网络的基础。该研究项目将为多名研究生和本科生未来在量子劳动力中的就业做好准备,其推广计划将通过虚拟和面对面的活动向公众介绍量子科学和技术的概念。技术说明:宽带隙半导体中的点缺陷已经成为量子信息科学和技术的领先平台,因为它们具有孤立的电子和核自旋态,可以通过光学和电子方式解决,用作量子比特和量子传感器。然而,迄今为止,大多数研究仅集中在少数缺陷系统和宿主材料上,并且新缺陷系统的识别是一个缓慢、艰巨且通常是临时的过程。鉴于大量的潜在材料和缺陷配置,它仍然是一个重大的挑战,从理论上预测和实验上确定有前途的候选人在一个系统的方式。这个合作的DMREF项目将通过结合新的计算和实验技术来解决这一挑战,以加速发现为自旋光量子接口优化的缺陷,掺杂剂和宿主材料。计算效率高的分析群论为基础的模型支持明智地使用从头算和低能量数值计算将促进系统的发现与所需的性能的电子系统,而新的高通量单发射光谱技术将使快速的实验表征。该项目的直接目标是确定以前未探索的自旋系统,这些系统在室温或接近室温时支持相干自旋光子界面,使用最先进的量子动力学控制技术。更广泛地说,选择满足特定材料和应用要求的缺陷的能力将彻底改变固态量子工程,并导致量子科学的各种新应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Optical Quantification of Heterogeneous Emitter Ensembles
- DOI:10.1021/acsphotonics.9b01707
- 发表时间:2020-01-01
- 期刊:
- 影响因子:7
- 作者:Breitweiser, S. Alex;Exarhos, Annemarie L.;Bassett, Lee C.
- 通讯作者:Bassett, Lee C.
Quantum defects by design
- DOI:10.1515/nanoph-2019-0211
- 发表时间:2019-11-01
- 期刊:
- 影响因子:7.5
- 作者:Bassett, Lee C.;Alkauskas, Audrius;Fu, Kai-Mei C.
- 通讯作者:Fu, Kai-Mei C.
Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride
- DOI:10.1103/prxquantum.3.030331
- 发表时间:2022-01
- 期刊:
- 影响因子:9.7
- 作者:Raj N. Patel;David A. Hopper;Jordan A. Gusdorff;M. Turiansky;Tzu-Yung Huang;Rebecca E. K. Fishman;Benjamin Porat;C. G. Van de Walle;L. Bassett
- 通讯作者:Raj N. Patel;David A. Hopper;Jordan A. Gusdorff;M. Turiansky;Tzu-Yung Huang;Rebecca E. K. Fishman;Benjamin Porat;C. G. Van de Walle;L. Bassett
Efficient Analysis of Photoluminescence Images for the Classification of Single-Photon Emitters
- DOI:10.1021/acsphotonics.2c00795
- 发表时间:2022-10-31
- 期刊:
- 影响因子:7
- 作者:Narun,Leah R.;Fishman,Rebecca E. K.;Bassett,Lee C.
- 通讯作者:Bassett,Lee C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEE BASSETT其他文献
LEE BASSETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEE BASSETT', 18)}}的其他基金
RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
- 批准号:
1842655 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Coupling Spin, Light, and Charge for Quantum Information Processing and Storage in Diamond
职业:耦合自旋、光和电荷,用于钻石中的量子信息处理和存储
- 批准号:
1553511 - 财政年份:2016
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant