CAREER: First-Principles Electron and Spin Dynamics in Materials with Spin-Orbit Coupling
职业:具有自旋轨道耦合的材料中的第一原理电子和自旋动力学
基本信息
- 批准号:1750613
- 负责人:
- 金额:$ 54.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports research and education in developing computational methodology for investigating and understanding in detail the motion of electrons in materials. The focus of the research is on a property of electrons called spin, which is analogous to the spinning rotation of a planet around its axis. In materials containing heavy atoms, such as bismuth or tungsten among others, the spin and spatial motions of electrons are coupled; this so-called spin-orbit coupling is at the center of recent breakthroughs in materials physics. The objective of the research is to develop accurate methodology for the calculation of the dynamics of electrons in materials where spin-orbit coupling is significant. In contrast to conventional studies, which typically employ simple models to interpret experiments, the goal is to develop truly predictive calculations that are free of empirical parameters and can be applied broadly to new materials. By accurately computing the interactions of electrons with atomic vibrations and defects in the crystal structure of the material, the project will develop a microscopic understanding of materials with yet untapped potential for new technology, including novel metals and ultrathin semiconductors containing heavy atoms. The work will generate knowledge and computational methods needed for breakthrough advances in electronics, renewable energy, spectroscopy, computing, and quantum technology. These efforts are critical for establishing a United States leadership in emerging technologies based on novel materials. The computational methods generated in the project will be freely available, user-friendly, and widely usable; users will include academic research groups, national laboratories, and the industry. This project aims to be an enriching opportunity for the high-school, undergraduate, and graduate students involved. The PI will train high-school students on scientific computing through engaging activities. The research team will host undergraduate students, who will contribute to research and develop their curricula by learning cutting-edge computational materials physics. The project will contribute to the development of graduate students with a unique interdisciplinary background at the intersection of physics, computer science, and materials science. They will be equipped to lead computational physics and materials science research in the United States. TECHNICAL SUMMARYThis CAREER award supports research and education in developing a detailed understanding of the dynamics of charge carriers and their spin in materials with spin-orbit coupling. The project will develop new theory and computational methods to accurately calculate the timescale and mechanisms of scattering, relaxation, transport, and ultrafast dynamics of electrons and spin in materials with spin-orbit coupling. While computations of charge and spin dynamics are typically heuristic, the PI will develop predictive first-principles calculations based on density functional theory and related methods that are free of empirical parameters and can be applied broadly to new materials. By accurately computing the interactions of electrons and spin with lattice vibrations and crystallographic defects, the project will develop a microscopic understanding of materials with yet untapped potential for new technology. The research team will focus on a range of materials with spin-orbit coupling, including two-dimensional transition-metal dichalcogenides for novel optoelectronic devices, lead-halide perovskites for efficient solar cells, and topological semiconductors and semimetals for new fundamentals physics. The complex atomic structure in these materials underscores the need for accurate and broadly applicable methods to compute carrier and spin dynamics in materials. The new methods and code generated in the project will be included in PERTURBO, a software developed by the PI to advance understanding of electron and excited-state dynamics in materials. The first-principles approach pursued here can be applied broadly to electronic and spin-based devices, as well as to advancing ultrafast electron and spin spectroscopies. These efforts are critical for establishing a United States leadership in emerging electronic, renewable energy, computing, and quantum technologies. The project integrates research and education by training a new generation of high-school and undergraduate students in scientific computing. The graduate students working on the project will acquire a unique interdisciplinary background at the intersection of physics, computer science, and materials science. They will be equipped to lead computational physics and materials science research in the United States.
非技术摘要该职业奖支持开发计算方法的研究和教育,以详细调查和理解材料中电子的运动。这项研究的重点是电子的一种称为自旋的特性,它类似于行星绕其轴的自转。在含有重原子的材料中,例如铋或钨等,电子的自旋和空间运动是耦合的;这种所谓的自旋轨道耦合是材料物理学近期突破的核心。该研究的目的是开发准确的方法来计算自旋轨道耦合很重要的材料中的电子动力学。与通常采用简单模型来解释实验的传统研究相比,其目标是开发真正的预测计算,不受经验参数的影响,并且可以广泛应用于新材料。通过精确计算电子与原子振动和材料晶体结构缺陷的相互作用,该项目将对具有尚未开发的新技术潜力的材料进行微观理解,包括新型金属和含有重原子的超薄半导体。这项工作将产生电子、可再生能源、光谱学、计算和量子技术突破性进展所需的知识和计算方法。这些努力对于确立美国在基于新材料的新兴技术方面的领导地位至关重要。项目中生成的计算方法将免费提供、用户友好且可广泛使用;用户将包括学术研究团体、国家实验室和业界。该项目旨在为参与其中的高中生、本科生和研究生提供丰富的机会。 PI 将通过参与活动对高中生进行科学计算方面的培训。该研究团队将接待本科生,他们将通过学习尖端的计算材料物理学来为研究和开发课程做出贡献。该项目将有助于培养在物理学、计算机科学和材料科学交叉领域具有独特跨学科背景的研究生。他们将有能力领导美国的计算物理和材料科学研究。技术摘要该职业奖支持研究和教育,以详细了解载流子的动力学及其在具有自旋轨道耦合的材料中的自旋。该项目将开发新的理论和计算方法,以精确计算自旋轨道耦合材料中电子和自旋的散射、弛豫、传输和超快动力学的时间尺度和机制。虽然电荷和自旋动力学的计算通常是启发式的,但 PI 将开发基于密度泛函理论和相关方法的预测性第一原理计算,这些计算不受经验参数的影响,可广泛应用于新材料。通过精确计算电子和自旋与晶格振动和晶体缺陷的相互作用,该项目将对具有尚未开发的新技术潜力的材料进行微观理解。研究小组将重点研究一系列具有自旋轨道耦合的材料,包括用于新型光电器件的二维过渡金属二硫属化物、用于高效太阳能电池的卤化铅钙钛矿,以及用于新基础物理的拓扑半导体和半金属。这些材料中复杂的原子结构强调需要准确且广泛适用的方法来计算材料中的载流子和自旋动力学。该项目中生成的新方法和代码将包含在 PERTURBO 中,这是 PI 开发的软件,旨在加深对材料中电子和激发态动力学的理解。这里追求的第一原理方法可以广泛应用于电子和基于自旋的设备,以及先进的超快电子和自旋光谱。这些努力对于确立美国在新兴电子、可再生能源、计算和量子技术方面的领导地位至关重要。该项目通过培训新一代的高中生和本科生进行科学计算,将研究和教育融为一体。从事该项目的研究生将获得物理学、计算机科学和材料科学交叉领域的独特跨学科背景。他们将有能力领导美国的计算物理和材料科学研究。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics
Perturbo:用于从头算电子声子相互作用、电荷传输和超快动力学的软件包
- DOI:10.1016/j.cpc.2021.107970
- 发表时间:2021
- 期刊:
- 影响因子:6.3
- 作者:Zhou, Jin-Jian;Park, Jinsoo;Lu, I-Te;Maliyov, Ivan;Tong, Xiao;Bernardi, Marco
- 通讯作者:Bernardi, Marco
Spin-phonon relaxation times in centrosymmetric materials from first principles
根据第一原理,中心对称材料中的自旋声子弛豫时间
- DOI:10.1103/physrevb.101.045202
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Park, Jinsoo;Zhou, Jin-Jian;Bernardi, Marco
- 通讯作者:Bernardi, Marco
Magnetotransport in semiconductors and two-dimensional materials from first principles
- DOI:10.1103/physrevb.103.l161103
- 发表时间:2021-01
- 期刊:
- 影响因子:3.7
- 作者:Dhruvkumar Desai;Bahdan Zviazhynski;Jin-Jian Zhou;M. Bernardi
- 通讯作者:Dhruvkumar Desai;Bahdan Zviazhynski;Jin-Jian Zhou;M. Bernardi
Ab initio electron-defect interactions using Wannier functions
使用 Wannier 函数从头算电子缺陷相互作用
- DOI:10.1038/s41524-020-0284-y
- 发表时间:2020
- 期刊:
- 影响因子:9.7
- 作者:Lu, I-Te;Park, Jinsoo;Zhou, Jin-Jian;Bernardi, Marco
- 通讯作者:Bernardi, Marco
Efficient Mean-Field Simulation of Quantum Circuits Inspired by Density Functional Theory
- DOI:10.1021/acs.jctc.3c00607
- 发表时间:2023-11-10
- 期刊:
- 影响因子:5.5
- 作者:Bernardi,Marco
- 通讯作者:Bernardi,Marco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Bernardi其他文献
A Data Compression Module for the SUNSET Platform
SUNSET平台的数据压缩模块
- DOI:
10.1109/ieeeconf38699.2020.9389344 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
D. Avola;Marco Bernardi;D. Pannone;C. Petrioli - 通讯作者:
C. Petrioli
2436 Rectal cancer redefined: enhancing organ preservation with Papillon X-ray therapy in Switzerland
直肠癌的重新定义:瑞士利用帕皮隆X射线疗法加强器官保留
- DOI:
10.1016/s0167-8140(25)01052-7 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristina Picardi;Francesca Caparrotti;Michael Montemurro;Daniel Christen;Nora Brunner-Schaub;Marie Fargier-Voiron;Laetitia Lestrade;Daniel Helbling;Marco Bernardi;Jan Schmidt;Jean-Pierre Gutzwiller;Frederic Ris;Oscar Matzinger - 通讯作者:
Oscar Matzinger
Management of acute chest pain in the Emergency Department: benefits of coronary computed tomography angiography
- DOI:
10.1007/s10554-024-03274-w - 发表时间:
2024-11-14 - 期刊:
- 影响因子:1.500
- 作者:
Gianmarco Sarto;Beatrice Simeone;Luigi Spadafora;Marco Bernardi;Erica Rocco;Giuseppe Pelle;Quirino Liberati;Maurizio Forte;Leonardo Schirone;Francesco Versaci;Rita Dal Piaz;Silvia Palmerio;Antonio Barberi;Giacomo Frati;Davide Bellini;Marco Rengo;Iacopo Carbone;Sebastiano Sciarretta;Valentina Valenti - 通讯作者:
Valentina Valenti
Catalytic Wet Air Oxidation of Maleic Acid Over Lanthanum-Based Perovskites Synthesized by Solution Combustion Synthesis
- DOI:
10.1007/s12649-014-9301-z - 发表时间:
2014-03-14 - 期刊:
- 影响因子:2.800
- 作者:
Marco Bernardi;Fabio Alessandro Deorsola;Debora Fino;Nunzio Russo - 通讯作者:
Nunzio Russo
Correction: Pre-participation Cardiovascular Evaluation for Paris 2024 Olympic Games in Elite Athletes: The Italian Experience
- DOI:
10.1007/s40292-025-00715-y - 发表时间:
2025-04-24 - 期刊:
- 影响因子:2.900
- 作者:
Maria Rosaria Squeo;Armando Ferrera;Giuseppe Di Gioia;Federica Mango;Viviana Maestrini;Sara Monosilio;Erika Lemme;Simone Crotta;Alessandro Spinelli;Andrea Serdoz;Roberto Fiore;Domenico Zampaglione;Cosimo Damiano Daniello;Massimo Volpe;Marco Bernardi;Antonio Pelliccia - 通讯作者:
Antonio Pelliccia
Marco Bernardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Bernardi', 18)}}的其他基金
Elements: The PERTURBO Package: A Community Code for Electron Interactions and Dynamics in Materials
元素:PERTURBO 包:材料中电子相互作用和动力学的社区代码
- 批准号:
2209262 - 财政年份:2022
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant
SI2-SSE: PERTURBO: A Software for Accelerated Discovery of Microscopic Electronic Processes in Materials
SI2-SSE:PERTURBO:加速发现材料中微观电子过程的软件
- 批准号:
1642443 - 财政年份:2016
- 资助金额:
$ 54.97万 - 项目类别:
Standard Grant
相似国自然基金
“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
- 批准号:21908075
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
- 批准号:
2238328 - 财政年份:2023
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
- 批准号:
2238516 - 财政年份:2023
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2342876 - 财政年份:2023
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
- 批准号:
2145144 - 财政年份:2022
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
2246394 - 财政年份:2022
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2143233 - 财政年份:2022
- 资助金额:
$ 54.97万 - 项目类别:
Continuing Grant