III: EAGER: Novel algorithms for de novo transcriptome assembly using RNA-seq data and for metagenome assembly
III:EAGER:使用 RNA-seq 数据从头转录组组装和宏基因组组装的新算法
基本信息
- 批准号:1553680
- 负责人:
- 金额:$ 9.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While high-throughput sequencing technology provides an unprecedented opportunity to reveal the complexity of transcriptomes or metagenomes, it poses a significant challenge to accurately and efficiently assemble the huge amount of short fragments into transcriptomes or genomes. A number of assemblers have been developed, but they all have limitations that have hindered their applications. This project will develop novel approaches, which would transform the method design and development of the challenging transcriptome and metagenome assembly. This project will also help educate students through seminars and courses how effective computational models could make a difference in addressing bioinformatics challenges.Based on the new insights gained through the preliminary work on a heuristic approach-based de novo assembler Bridger, recently published in Genome Biology, this project will develop novel algorithms for de novo transcriptome assembly using RNA-seq data. The novelty of the approach lies in (1) new graph models, different from the de Bruijn graph or overlap graph of existing assemblers, and (2) the search algorithms, both of which will integrate sequence coverage depth information and paired-end reads into the procedure. It is anticipated that the new approach will achieve significantly increased sensitivity and specificity, compared with current de novo assemblers including Trinity or even current reference-based assemblers such as Cufflinks or StringTie. Furthermore, based on the algorithmic techniques developed for transcriptome assembly and the common features between transcriptome and metagenome assemblies, this project will explore and develop algorithms to assemble metagenomes, which is a computationally demanding task due to the mixture of large collections of short DNA sequence fragments from many different organisms, and the inconsistency of sequencing coverage of different organisms. For further information see the project web site at: http://bioinformatics.astate.edu/assembly/
虽然高通量测序技术为揭示转录组或宏基因组的复杂性提供了前所未有的机会,但准确有效地将大量短片段组装成转录组或基因组却构成了重大挑战。已经开发了许多汇编器,但它们都有限制,阻碍了它们的应用。该项目将开发新的方法,这将改变具有挑战性的转录组和宏基因组组装的方法设计和开发。该项目还将通过研讨会和课程帮助学生了解有效的计算模型如何在应对生物信息学挑战方面发挥作用。基于最近发表在《基因组生物学》上的基于启发式方法的从头组装程序布里杰的初步工作所获得的新见解,该项目将开发使用RNA-seq数据的从头转录组组装的新算法。该方法的新奇在于(1)新的图模型,不同于现有组装器的de Bruijn图或重叠图,以及(2)搜索算法,这两者都将序列覆盖深度信息和配对末端读取整合到程序中。预计与当前的从头组装器(包括Trinity)或甚至当前基于参考的组装器(如Cufflinks或StringTie)相比,新方法将实现显著增加的灵敏度和特异性。此外,基于为转录组组装开发的算法技术以及转录组和宏基因组组装之间的共同特征,本项目将探索和开发组装宏基因组的算法,由于来自许多不同生物体的大量短DNA序列片段的混合,以及不同生物体的测序覆盖范围的不一致性,这是一项计算要求很高的任务。欲了解更多信息,请访问项目网站:http://bioinformatics.astate.edu/assembly/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuzhen Huang其他文献
Fixed-Parameter Approximation: Conceptual Framework and Approximability Results
固定参数逼近:概念框架和逼近性结果
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.1
- 作者:
Liming Cai;Xiuzhen Huang - 通讯作者:
Xiuzhen Huang
Advancing LGBTQ+ inclusion in STEM education and AI research
推动 LGBTQ 融入 STEM 教育和人工智能研究
- DOI:
10.1016/j.patter.2024.101010 - 发表时间:
2024 - 期刊:
- 影响因子:6.5
- 作者:
Emily Wong;R. Urbanowicz;T. Bright;Nicholas P. Tatonetti;Yi;Xiuzhen Huang;Jason H. Moore;Pei - 通讯作者:
Pei
On PTAS for Planar Graph Problems
平面图问题的 PTAS
- DOI:
10.1007/978-0-387-34735-6_24 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiuzhen Huang;Jianer Chen - 通讯作者:
Jianer Chen
Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration
- DOI:
http://doi.org/10.1016/j.stem.2019.11.010 - 发表时间:
2019 - 期刊:
- 影响因子:23.9
- 作者:
Juan Tang;Haixiao Wang;Xiuzhen Huang;Fei Li;Huan Zhu;Yan Li;Lingjuan He;Hui Zhang;Wenjuan Pu;Kuo Liu;Huan Zhao;Jacob Fog Bentzon;Ying Yu;Yong Ji;Yu Nie;Xueying Tian;Li Zhang;Dong Gao;Bin Zhou - 通讯作者:
Bin Zhou
The antibacterial effect of bacteriophage-like gold nanoparticles
类噬菌体金纳米颗粒的抗菌作用
- DOI:
10.1142/s1793292021500752 - 发表时间:
2021 - 期刊:
- 影响因子:1.2
- 作者:
Xiuzhen Huang;Benben Lu;Yingxian Zhao;Zhiqiang Wang;Hongwei Wang;Lin Yuan - 通讯作者:
Lin Yuan
Xiuzhen Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuzhen Huang', 18)}}的其他基金
NSF EPSCoR Workshop: Artificial Intelligence (AI) with No-Boundary Thinking (NBT) to Foster Collaborations in Research, Education and Training
NSF EPSCoR 研讨会:人工智能 (AI) 与无边界思维 (NBT) 促进研究、教育和培训方面的合作
- 批准号:
2054737 - 财政年份:2021
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
SCH: EAGER: New Approach: Early Diagnosis of Alzheimer's Disease Based on Magnetic Resonance Imaging (MRI) via High-Dimensional Image Feature Identification
SCH:EAGER:新方法:通过高维图像特征识别基于磁共振成像 (MRI) 的阿尔茨海默病早期诊断
- 批准号:
1723529 - 财政年份:2017
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: Building a Starting Core for No-Boundary Education and Research Network
EAGER:构建无边界教育研究网络的起始核心
- 批准号:
1452211 - 财政年份:2014
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
NSF EPSCoR Workshop in Bioinformatics to Foster Collaborative Research, March 3-5, 2013.
NSF EPSCoR 生物信息学促进合作研究研讨会,2013 年 3 月 3-5 日。
- 批准号:
1239812 - 财政年份:2012
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Fertilizing the Tree of Life with novel taxa from deep-sea vent microbial metagenomes collected over time and space
EAGER:用随时间和空间收集的深海喷口微生物宏基因组中的新类群为生命之树施肥
- 批准号:
2409507 - 财政年份:2024
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Quantum dynamics in novel chalcogenide materials and devices
EAGER:IMPRESS-U:新型硫族化物材料和器件中的量子动力学
- 批准号:
2403609 - 财政年份:2024
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
- 批准号:
2418485 - 财政年份:2024
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: A Novel Multi-Tray Dry Biofilm Reactor for Methane Capture from Air
EAGER:一种新型多盘干式生物膜反应器,用于从空气中捕获甲烷
- 批准号:
2331602 - 财政年份:2023
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: Development of Novel Chemical Ionization Detection of Peroxy Radicals for Fundamental Kinetics Experiments
EAGER:开发用于基础动力学实验的新型过氧自由基化学电离检测
- 批准号:
2336463 - 财政年份:2023
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: A novel route for high activation of implanted p-type regions in vertical Gallium Nitride devices.
EAGER:一种在垂直氮化镓器件中高度激活注入 p 型区域的新途径。
- 批准号:
2230090 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
Eager: Novel MXene nanocomposites based 3D printed flexible sensors for noninvasive health monitoring
Eager:基于 3D 打印柔性传感器的新型 MXene 纳米复合材料,用于无创健康监测
- 批准号:
2226202 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER GERMINATION: Computational Modeling from Scenario Development: A Pedagogy for Generating Novel Research Questions to Address Critical Societal Issues
渴望萌发:情景开发的计算模型:产生新的研究问题以解决关键社会问题的教学法
- 批准号:
2203623 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: A novel approach to measure greenhouse gas emissions from coastal marine ecosystems
EAGER:测量沿海海洋生态系统温室气体排放的新方法
- 批准号:
2223204 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant
EAGER: A Novel 3-D Printed PVDF-TrFE Copolymer Wall Shear Stress Measuring Device for Measurement of Wall Shear Stress in Unsteady Flow Applications
EAGER:一种新型 3D 打印 PVDF-TrFE 共聚物壁切应力测量装置,用于测量非定常流应用中的壁切应力
- 批准号:
2219730 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Standard Grant














{{item.name}}会员




