SCH: EAGER: New Approach: Early Diagnosis of Alzheimer's Disease Based on Magnetic Resonance Imaging (MRI) via High-Dimensional Image Feature Identification

SCH:EAGER:新方法:通过高维图像特征识别基于磁共振成像 (MRI) 的阿尔茨海默病早期诊断

基本信息

  • 批准号:
    1723529
  • 负责人:
  • 金额:
    $ 24.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Alzheimer's disease (AD) is a form of progressive neurodegenerative dementia and one of the most common diseases in the aging population. Early diagnosis of AD is strongly recommended for several reasons. First, it can helps to significantly reduce the social and economic impacts caused by AD and allow people to better manage and plan ahead. Second, it may provide more information for researchers seeking new scientific approaches for early treatment and intervention. However, in current clinical practice early diagnosis is often a challenge. While neuroimaging is routinely collected in hospitals, it is very hard for radiologists to manually read the high-dimensional image data for analysis and interpretation. This project proposes untested but potentially transformative research approaches to identify high-dimensional image features for AD early diagnosis based on Magnetic Resonance Imaging (MRI). This project will advance the research in machine learning, optimization, statistics, image science and bioinformatics, and potentially be used to address other high-dimensional images besides brain images. The project also has broader impacts through cross-disciplinary research, training and education. This project has the following two aims: 1) Develop sparse coding based algorithms to identify features of structural MRI images for classifying AD patients and other diagnostic groups. This will allow the key structural features of images that separate AD patients, individuals with mild cognitive impairment (MCI) or healthy individuals to be identified. 2) Develop optimization and machine learning algorithms based on tensor Tucker core decomposition for high-dimensional image-marker detection from longitudinal functional MRI images. This approach should reduce the high computational complexity of marker detection from the longitudinal MRI images of AD patients. It is anticipated that the developed algorithms will enhance high-dimensional neuroimaging marker detection and diagnostic classification. This research project, if successful, will greatly impact the current practice of AD diagnosis by providing clinical doctors with the information from a larger population and also significantly easing the burden of radiologists.
阿尔茨海默病(AD)是进行性神经退行性痴呆的一种形式,是老年人口中最常见的疾病之一。出于几个原因,强烈建议对AD进行早期诊断。首先,它可以帮助显著减少AD造成的社会和经济影响,并使人们能够更好地管理和提前计划。其次,它可能为寻求早期治疗和干预的新科学方法的研究人员提供更多信息。然而,在目前的临床实践中,早期诊断往往是一项挑战。虽然医院常规收集神经成像,但放射科医生很难手动读取高维图像数据进行分析和解释。该项目提出了未经测试但具有潜在变革性的研究方法,以识别高维图像特征,用于基于磁共振成像(MRI)的AD早期诊断。该项目将推进机器学习、优化、统计学、图像科学和生物信息学的研究,并有可能用于处理除脑图像之外的其他高维图像。该项目还通过跨学科的研究、培训和教育产生了更广泛的影响。本课题有以下两个目标:1)开发基于稀疏编码的结构磁共振图像特征识别算法,用于AD患者和其他诊断人群的分类。这将使区分AD患者、轻度认知障碍(MCI)患者或健康人的图像的关键结构特征得以识别。2)开发了基于张量Tucker核分解的高维图像标记物检测的优化和机器学习算法。这种方法可以降低从AD患者的纵向MRI图像中检测标志物的高计算复杂度。预计开发的算法将增强高维神经成像标志物的检测和诊断分类。这项研究项目如果成功,将为临床医生提供来自更大人群的信息,并显著减轻放射科医生的负担,从而极大地影响目前的AD诊断实践。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization
Arkansas AI-Campus Method for the 2019 Kidney Tumor Segmentation Challenge
阿肯色州 AI-Campus 方法应对 2019 年肾肿瘤分割挑战赛
An Ensemble of U-Net Models for Kidney Tumor Segmentation With CT Images.
Highly accurate model for prediction of lung nodule malignancy with CT scans.
  • DOI:
    10.1038/s41598-018-27569-w
  • 发表时间:
    2018-06-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Causey JL;Zhang J;Ma S;Jiang B;Qualls JA;Politte DG;Prior F;Zhang S;Huang X
  • 通讯作者:
    Huang X
DNAp: A Pipeline for DNA-seq Data Analysis.
  • DOI:
    10.1038/s41598-018-25022-6
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Causey JL;Ashby C;Walker K;Wang ZP;Yang M;Guan Y;Moore JH;Huang X
  • 通讯作者:
    Huang X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiuzhen Huang其他文献

Advancing LGBTQ+ inclusion in STEM education and AI research
推动 LGBTQ 融入 STEM 教育和人工智能研究
  • DOI:
    10.1016/j.patter.2024.101010
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Emily Wong;R. Urbanowicz;T. Bright;Nicholas P. Tatonetti;Yi;Xiuzhen Huang;Jason H. Moore;Pei
  • 通讯作者:
    Pei
Fixed-Parameter Approximation: Conceptual Framework and Approximability Results
固定参数逼近:概念框架和逼近性结果
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Liming Cai;Xiuzhen Huang
  • 通讯作者:
    Xiuzhen Huang
On PTAS for Planar Graph Problems
平面图问题的 PTAS
  • DOI:
    10.1007/978-0-387-34735-6_24
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiuzhen Huang;Jianer Chen
  • 通讯作者:
    Jianer Chen
Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration
  • DOI:
    http://doi.org/10.1016/j.stem.2019.11.010
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    23.9
  • 作者:
    Juan Tang;Haixiao Wang;Xiuzhen Huang;Fei Li;Huan Zhu;Yan Li;Lingjuan He;Hui Zhang;Wenjuan Pu;Kuo Liu;Huan Zhao;Jacob Fog Bentzon;Ying Yu;Yong Ji;Yu Nie;Xueying Tian;Li Zhang;Dong Gao;Bin Zhou
  • 通讯作者:
    Bin Zhou
The antibacterial effect of bacteriophage-like gold nanoparticles
类噬菌体金纳米颗粒的抗菌作用
  • DOI:
    10.1142/s1793292021500752
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Xiuzhen Huang;Benben Lu;Yingxian Zhao;Zhiqiang Wang;Hongwei Wang;Lin Yuan
  • 通讯作者:
    Lin Yuan

Xiuzhen Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiuzhen Huang', 18)}}的其他基金

NSF EPSCoR Workshop: Artificial Intelligence (AI) with No-Boundary Thinking (NBT) to Foster Collaborations in Research, Education and Training
NSF EPSCoR 研讨会:人工智能 (AI) 与无边界思维 (NBT) 促进研究、教育和培训方面的合作
  • 批准号:
    2054737
  • 财政年份:
    2021
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
III: EAGER: Novel algorithms for de novo transcriptome assembly using RNA-seq data and for metagenome assembly
III:EAGER:使用 RNA-seq 数据从头转录组组装和宏基因组组装的新算法
  • 批准号:
    1553680
  • 财政年份:
    2015
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: Building a Starting Core for No-Boundary Education and Research Network
EAGER:构建无边界教育研究网络的起始核心
  • 批准号:
    1452211
  • 财政年份:
    2014
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
NSF EPSCoR Workshop in Bioinformatics to Foster Collaborative Research, March 3-5, 2013.
NSF EPSCoR 生物信息学促进合作研究研讨会,2013 年 3 月 3-5 日。
  • 批准号:
    1239812
  • 财政年份:
    2012
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
  • 批准号:
    2412196
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: TRTech-PGR: New methods to study gene-specific translation regulation
EAGER:TRTech-PGR:研究基因特异性翻译调控的新方法
  • 批准号:
    2327912
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: Revolutionizing Wikipedia’s Relationship with New and Emerging Knowledge
EAGER:彻底改变维基百科与新兴知识的关系
  • 批准号:
    2332841
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Exploring New Pathways into Cybersecurity Careers for Rural English Learners through XR-enabled Educational Methods
教育 DCL:EAGER:通过支持 XR 的教育方法探索农村英语学习者网络安全职业的新途径
  • 批准号:
    2335751
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: CRYO: New Quantum Elastocaloric Demagnetization Refrigeration for the Millikelvin Range
EAGER:CRYO:毫开尔文范围内的新型量子弹热退磁制冷
  • 批准号:
    2233149
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: A New Aerial Platform for Turbulence Measurements in the Atmospheric Surface Layer
EAGER:用于测量大气表层湍流的新型空中平台
  • 批准号:
    2332467
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film
EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜
  • 批准号:
    2314036
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: Developing a New Tool to Measure Discrimination Based on Social Class for Adolescents
EAGER:开发一种新工具来衡量基于青少年社会阶层的歧视
  • 批准号:
    2317285
  • 财政年份:
    2023
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
EAGER: A New Multiphoton Luminescence Imaging Approach to Interrogate the Fate of Metallic Nanoparticles in a Living System
EAGER:一种新的多光子发光成像方法来探究金属纳米粒子在生命系统中的命运
  • 批准号:
    2223834
  • 财政年份:
    2022
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了