CAREER: Large Scale Learning for Complex Image-Omics Data Analytics

职业:复杂图像组学数据分析的大规模学习

基本信息

  • 批准号:
    1553687
  • 负责人:
  • 金额:
    $ 53.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This proposal aims to develop computational tools for analyzing complex pathology and radiology image data as well genomics data. Recent technological innovations are enabling scientists to capture complex imaging and genomic data from different views. However, the major computational challenges are due to the unprecedented scale and complexity of heterogeneous data analytics. To solve the key and challenging problems in mining such comprehensive heterogeneous image and genomic data, the PI proposes to develop novel large scale learning tools and explore ways to integrate features from multiple data sources for clinical outcome prediction. It will greatly support the Precision Medicine Initiative, which has become a national goal and was unveiled by the U.S. government as a research effort designed to enable physicians to select individualized treatments. This project will facilitate the development of novel educational tools to enhance several current courses. The PI proposes an integrated research and education plan based on the following three components: (1) big image analytics and feature extraction, in which novel sparse convolution kernels, sparse deformable models and quantitative topology measurements are proposed to extract local and global features to fully characterize whole images; (2) large scale feature learning, in which domain knowledge guided sparse feature learning models and non-convex sparse feature learning models are proposed for large scale image marker discovery; and (3) multi-source image-omics data integration, in which sparse multi-view learning and large scale learning with bipartite graph are developed for big image-omics data integration, where the image-omics refers to both image data (pathology images or radiology images) and omics data (genomics, proteomics or metabolomics) captured from the same patient. This project will advance research in efficient feature learning from giga-pixel images, and in integrating heterogeneous image-omics data for outcome prediction and knowledge discovery. The success of this project will create a new paradigm for medical image informatics and big data.
本提案旨在开发计算工具,以分析复杂的病理和放射图像数据以及基因组学数据。最近的技术创新使科学家能够从不同的角度获取复杂的成像和基因组数据。然而,主要的计算挑战是由于异构数据分析的前所未有的规模和复杂性。为了解决挖掘此类综合异构图像和基因组数据的关键和挑战性问题,PI建议开发新的大规模学习工具,并探索如何整合多个数据源的特征以进行临床结果预测。它将极大地支持精准医疗计划,该计划已成为一个国家目标,并由美国政府公布,作为一项旨在使医生能够选择个性化治疗的研究努力。这个项目将促进新的教育工具的发展,以加强一些现有的课程。PI提出了基于以下三个组成部分的综合研究和教育计划:(1)大图像分析和特征提取,提出了新颖的稀疏卷积核、稀疏可变形模型和定量拓扑测量来提取局部和全局特征,以充分表征整个图像;(2)大规模特征学习,提出了面向大规模图像标记发现的领域知识引导稀疏特征学习模型和非凸稀疏特征学习模型;(3)多源图像组学数据集成,其中针对大图像组学数据集成开发了稀疏多视图学习和二部图大规模学习,其中图像组学是指从同一患者采集的图像数据(病理图像或放射图像)和组学数据(基因组学、蛋白质组学或代谢组学)。该项目将推进从千兆像素图像中高效特征学习的研究,以及整合异构图像组学数据以进行结果预测和知识发现。该项目的成功将开创医学图像信息学和大数据的新范式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junzhou Huang其他文献

Adversarial Domain Adaptation for Cell Segmentation
细胞分割的对抗域适应
Feature Matching with Affine-Function Transformation Models
与仿射函数变换模型的特征匹配
Equivariant Graph Mechanics Networks with Constraints
具有约束的等变图力学网络
Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study
AI辅助显微镜能否促进乳腺HER2解读?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    M. Yue;Jun Zhang;Xinran Wang;Kezhou Yan;Lijing Cai;Kuan Tian;Shuyao Niu;Xiao Han;Yongqiang Yu;Junzhou Huang;Dandan Han;Jianhua Yao;Yueping Liu
  • 通讯作者:
    Yueping Liu
Recent Advances in Reliable Deep Graph Learning: Adversarial Attack, Inherent Noise, and Distribution Shift
可靠深度图学习的最新进展:对抗性攻击、固有噪声和分布偏移
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingzhe Wu;Jintang Li;Chengbin Hou;Guoji Fu;Yatao Bian;Liang Chen;Junzhou Huang
  • 通讯作者:
    Junzhou Huang

Junzhou Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junzhou Huang', 18)}}的其他基金

EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
  • 批准号:
    2400785
  • 财政年份:
    2023
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: A Topological Analysis of Uncertainly Representation in the Brain
RI:小:协作研究:大脑中不确定表征的拓扑分析
  • 批准号:
    1718853
  • 财政年份:
    2017
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Robust Materials Genome Data Mining Framework for Prediction and Guidance of Nanoparticle Synthesis
III:小型:协作研究:用于预测和指导纳米颗粒合成的稳健材料基因组数据挖掘框架
  • 批准号:
    1423056
  • 财政年份:
    2014
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
  • 批准号:
    2339904
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
  • 批准号:
    2237574
  • 财政年份:
    2023
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了