CAREER: The Geometry of Polynomials in Algorithms and Combinatorics

职业:算法和组合学中多项式的几何

基本信息

  • 批准号:
    1553751
  • 负责人:
  • 金额:
    $ 41.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

Graphs and matrices are central objects in computer science. Two of the most successful paradigms for manipulating and optimizing over them are spectral methods, which study eigenvalues and eigenvectors, and semidefinite programming, which allows efficient optimization over certain convex sets defined by putting constraints on these eigenvalues. The goal of this proposal is to investigate a new technique for controlling eigenvalues which relies on tools from an area known as the geometry of polynomials. This alternate perspective was shown to be very powerful in recent work of the PI on Ramanujan expander graphs and the Kadison-Singer problem, and the PI believes that a more complete understanding of it will be fruitful both for theoretical computer science and for mathematics.At a technical level, the PI will focus on two points of contact between the geometry of polynomials and computer science: (A) The method of interlacing families of polynomials, a new analogue of the probabilistic method recently introduced by the PI and collaborators, based on studying random polynomials with real roots. (B) Hyperbolic programming, a generalization of semidefinite programming which is intimately related to the polynomials appearing in (A).More specifically, the proposal has the following goals: (i) Develop a more systematic and general understanding of (A) and use this to attack central linear-algebraic and combinatorial problems in TCS and applied math. (ii) Find efficient algorithms for producing the useful objects guaranteed to exist by (A), which currently require exponential time. (iii) Explore the power of (B) as an algorithmic primitive in combinatorial optimization, in particular as an approach to graph partitioning problems, and understand whether it is actually more powerful than semidefinite programming.The problems outlined in the proposal have the potential to impact various fields, such as signal processing, quantum computing, pseudorandomness, complexity theory, and operator theory. The subject is accessible to students of from diverse backgrounds across math and computer science, so this project uses to integrate research and education for both graduate and undergraduate students working between these fields.
图和矩阵是计算机科学中的中心对象。两个最成功的范例操纵和优化他们的谱方法,研究特征值和特征向量,和半定规划,它允许有效的优化某些凸集上定义的这些特征值的约束。这个建议的目的是调查一种新的技术,用于控制特征值,它依赖于工具,从一个地区被称为几何的多项式。在最近的Ramanujan扩展图和Kadison-Singer问题的研究中,PI证明了这种观点的强大,PI相信对它的更全面的理解将对理论计算机科学和数学都有很大的帮助。在技术层面上,PI将专注于多项式几何和计算机科学之间的两个联系点:(A)多项式族交错法,这是PI及其合作者最近在研究具有真实的根的随机多项式的基础上提出的概率方法的一种新的类似方法。 (B)双曲规划,半定规划的一种推广,它与(A)中出现的多项式密切相关。更具体地说,该提案有以下目标:(i)发展对(A)的更系统和一般的理解,并利用这一点来解决TCS和应用数学中的中心线性代数和组合问题。A),目前需要指数时间。 (iii)探索(B)作为组合优化中的算法原语的能力,特别是作为图划分问题的方法,并了解它是否实际上比半定规划更强大。提案中概述的问题有可能影响各个领域,如信号处理,量子计算,伪随机性,复杂性理论和算子理论。该主题可供来自数学和计算机科学不同背景的学生使用,因此该项目用于整合这些领域之间工作的研究生和本科生的研究和教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikhil Srivastava其他文献

Higher Order Stable Numerical Algorithm for the Variable Order Time-Fractional Sub-diffusion Equation
  • DOI:
    10.1007/s40995-024-01726-5
  • 发表时间:
    2024-11-04
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Priyanka Rajput;Nikhil Srivastava;Vineet Kumar Singh
  • 通讯作者:
    Vineet Kumar Singh
Global Convergence of Hessenberg Shifted QR I: Exact Arithmetic
Hessenberg 移动 QR I 的全局收敛:精确算术
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jess Banks;Jorge Garza;Nikhil Srivastava
  • 通讯作者:
    Nikhil Srivastava
Estimation of real COVID-19 cases in India during the first wave
第一波疫情期间印度真实 COVID-19 病例估计
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunil Kumar Rai;G. Chaubey;Prajjval Pratap Singh;R. Tamang;M. K. Shukla;Rahul Kumar Mishra;Anshika Srivastava;Bhargawi;Mishra;Nikhil Srivastava;A. Singh;Alay Bhatt;Abhishek K. Shrivastava;Sudhir K. Upadhyay;Ashish Singh;Sanjeev Maurya;Purnendu;Saxena;Vanya Singh;Vineeta Singh;A. Chaubey;D. K. Mishra;Yashvant Patel;R. K. Pandey;Chanchal Devnani;;mari Nidhi;Ankit Srivastava;N. Khanam;Debashruti Das;Audditiya Bandopadhyay;Urgyan Chorol;N. Pasupuleti;S. Desai;Bishnu Deo Yadav;Sachin Kumar Shrivastav;Satya Prakash;Indu Sharma;Varun Sharma;Astha Mishra;Rajeev Singh;Pavan Dubey;Shani;Vishwakarma;P. Basu;J. J. Sequeira;K. Lavanya;T. Ijinu;Dau Dayal Aggarwal;Anand Prakash;Kiran Yadav;Anupam Yadav;Govind Chaubey;Gunjan Mukim;A. Bhandari;Ankita Ghosh;Akash Kumar;V. K. Yadav;Kriti Nigam;A. Harshey;Tanurup Das;D. Devadas;S. Mishra;Ashish;A. Yadav;N. Singh;Sanjay Kumar;Charu Sharma;Ritabrata Chowdhury;Abhik Sengupta;Arpan Bhattacharya;Divyanshu Sinha;Dharmendra Jain;Abhai Kumar;R. Shukla;R. K. Mishra;Royana Singh;Y. Tripathi;V. Mishra;M. Mustak;N. Rai;S. Rawat;P. Suravajhala;Keshav K. Singh;Pradeep Kumar;A. Rai;C. Mallick;P. Shrivastava;Gyaneshwer;Chaubey
  • 通讯作者:
    Chaubey
Tolerance and Prejudice Co-exist in Hindu’s Self-Reported Attitudes towards Muslims
印度教徒自述对穆斯林的态度中宽容与偏见并存
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nazar Khalid;Payal Hathi;D. Coffey;Meghana Mungikar;Nikhil Srivastava
  • 通讯作者:
    Nikhil Srivastava
Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology.
使用 IPCC 第 2 级方法开发贝宁牛肠道发酵的甲烷排放因子。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    J. Kouazounde;Joachim Gbenou;S. Babatoundé;Nikhil Srivastava;S. Eggleston;Christopher Antwi;J. Baah;T. A. McAllister
  • 通讯作者:
    T. A. McAllister

Nikhil Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikhil Srivastava', 18)}}的其他基金

AF: SMALL: Provable Algorithms for Nonhermitian Matrices
AF:SMALL:非埃尔米特矩阵的可证明算法
  • 批准号:
    2009011
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
  • 批准号:
    2154019
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2022
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2021
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Fusion of algebra, geometry and combinatorics based on the roots of Poincare polynomials of hyperplane arrangements
基于超平面排列庞加莱多项式根的代数、几何和组合数学的融合
  • 批准号:
    20K20880
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Conic Stability in the Geometry of Polynomials
多项式几何中的圆锥稳定性
  • 批准号:
    438633658
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Research Grants
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2020
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of hyperbolic polynomials
双曲多项式的几何
  • 批准号:
    426054364
  • 财政年份:
    2019
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Research Grants
AF: Small: Geometry of Polynomials and Algorithm Design
AF:小:多项式几何与算法设计
  • 批准号:
    1812919
  • 财政年份:
    2018
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Standard Grant
Workshops on Geometry of Polynomials
多项式几何研讨会
  • 批准号:
    1835986
  • 财政年份:
    2018
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Standard Grant
CAREER: Polynomials, Geometry, and Dynamics
职业:多项式、几何和动力学
  • 批准号:
    1452392
  • 财政年份:
    2015
  • 资助金额:
    $ 41.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了