CAREER: Polynomials, Geometry, and Dynamics
职业:多项式、几何和动力学
基本信息
- 批准号:1452392
- 负责人:
- 金额:$ 44.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems are all around us: they govern the motion of the planets, the weather, the stock market, the ecosystems in which we live. These systems depend on a variety of parameters, and as these parameters change, the corresponding system is affected. Understanding how dynamical systems change with different parameters is a very complicated and delicate question which is not even completely understood in the simplest of mathematical models. The research outlined in this proposal explores connections between different perspectives on parameter spaces associated to particular dynamical systems. For example, one of the most intriguing ways to view these parameter spaces is algebraically; that is, these parameters spaces are intimately related of roots of polynomials, an area of mathematics that, a priori, has no obvious connection to dynamics. Investigating these mysterious and somewhat surprising connections is one of the main research goals outlined in this proposal. This proposal also contains a substantial outreach component to share mathematics with high school students through mathematical fieldtrips to the Mathematics Department at the University of Michigan, and to give graduate students and postdocs opportunities to learn from each other through a series of workshops, which will be followed by companion conferences at the University of Michigan. A major goal in the field of complex dynamics is to understand dynamical moduli spaces. The most successful endeavor in this regard has been the study of the moduli space of quadratic polynomials where the Mandelbrot set lives; the Mandelbrot set is a universal object in complex dynamics. Much of the structure of the Mandelbrot set can actually be revealed through algebraic data; that is, there are distinguished algebraic integers in the Mandelbrot set (ie, roots of a certain collection of polynomials with integer coefficients), and these points are dense in the boundary. In the first part of this proposal, we consider collections of algebraic integers (or roots of collections of polynomials) arising naturally in the parameter space of an iterated function system. We take the topological closure of these roots and (following some work of others) develop a dynamical theory of the iterated function system to better understand the structure of this set. Much of the discussion unfolds in a way parallel to that for quadratic polynomials except there are some surprising differences and still many interesting questions to explore which link geometry, dynamics, algebra, and Galois theory. The second part of this proposal is centered around algebraic data and Thurston's Topological Characterization of Rational Maps, one of the most important theorems in complex dynamics. Associated to a postcritically finite rational map on the Riemann sphere, are three different kinds of linear operators. These operators naturally arise in the setting of Thurston's theorem, each acting on a finite-dimensional vector space. The characteristic polynomials of these operators have rational coefficients, so the corresponding eigenvalues are algebraic. This proposal explores possible connections that these operators (and their eigenvalues) have with each other, and connections that these operators (and their eigenvalues) have with the geometry and dynamics of the original rational map.
动力系统就在我们周围:它们支配着行星的运动、天气、股票市场和我们生活的生态系统。这些系统依赖于各种参数,并且当这些参数改变时,相应的系统受到影响。了解动力系统如何随不同参数变化是一个非常复杂和微妙的问题,即使在最简单的数学模型中也无法完全理解。本提案中概述的研究探讨了与特定动力系统相关的参数空间的不同观点之间的联系。例如,观察这些参数空间最有趣的方法之一是代数;也就是说,这些参数空间与多项式的根密切相关,这是一个先验的数学领域,与动力学没有明显的联系。调查这些神秘而令人惊讶的联系是本提案中概述的主要研究目标之一。该提案还包含一个实质性的外联部分,通过到密歇根大学数学系进行数学实地考察,与高中生分享数学知识,并通过一系列研讨会,为研究生和博士后提供相互学习的机会,随后将在密歇根大学举行同伴会议。复动力学领域的一个主要目标是理解动力学模空间。在这方面最成功的奋进是研究二次多项式的模空间,其中曼德尔布罗特集的生活;曼德尔布罗特集是复动力学中的普遍对象。曼德尔布罗特集的大部分结构实际上可以通过代数数据来揭示;也就是说,在曼德尔布罗特集中有特殊的代数整数(即,具有整数系数的多项式的某个集合的根),并且这些点在边界上是密集的。在这个建议的第一部分,我们考虑集合的代数整数(或根集合的多项式)自然产生的参数空间中的迭代函数系统。我们采取的拓扑封闭这些根和(以下的一些工作的其他人)开发的迭代函数系统的动力学理论,以更好地理解这个集合的结构。大部分的讨论展开的方式平行于二次多项式,除了有一些令人惊讶的差异,仍然有许多有趣的问题,以探讨其中链接几何,动力学,代数和伽罗瓦理论。这个建议的第二部分是围绕代数数据和瑟斯顿的有理映射的拓扑特征,在复杂的动力学中最重要的定理之一。与黎曼球面上的后临界有限有理映射相关联的是三种不同的线性算子。这些算子自然出现在瑟斯顿定理的设定中,每个算子作用于有限维向量空间。这些算子的特征多项式具有有理系数,因此相应的特征值是代数的。这个提议探索了这些算子(及其本征值)彼此之间可能存在的联系,以及这些算子(及其本征值)与原始有理映射的几何和动力学之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Koch其他文献
Resilience characterized and quantified from physical activity data: A tutorial in R.
根据身体活动数据表征和量化的复原力:R 教程。
- DOI:
10.1016/j.psychsport.2022.102361 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
D. Baretta;Sarah Koch;Inés Cobo;G. Castaño‐Vinyals;R. de Cid;A. Carreras;J. Buekers;J. Garcia;J. Inauen;G. Chevance - 通讯作者:
G. Chevance
imaging of the airways in older ex-smokers Evidence for dysanapsis using computed tomographic
老年戒烟者的气道成像 使用计算机断层扫描提供呼吸不良的证据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Mcwilliams;S. Lam;H. Coxson;A. Sheel;J. Guenette;R. Yuan;Lukas Holy;J. Mayo;Sarah Koch;M. MacInnis;B. Sporer;J. Rupert;M. Koehle;Sabrina S. Wilkie;P. Dominelli;A. William - 通讯作者:
A. William
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß<sub>2</sub>-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction
- DOI:
10.1016/j.envint.2020.106182 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Sarah Koch;Joseph F. Welch;Raymond Tran;Andrew H. Ramsook;Andy Hung;Christopher Carlsten;Jordan A. Guenette;Michael S. Koehle - 通讯作者:
Michael S. Koehle
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction.
在一项实验室控制的柴油机尾气暴露研究中,对运动引起的支气管收缩的个体吸入短效 β2 激动剂后对恒定负荷运动的通气反应。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:11.8
- 作者:
Sarah Koch;Joseph F Welch;Raymond Tran;A. Ramsook;A. Hung;C. Carlsten;J. Guenette;M. Koehle - 通讯作者:
M. Koehle
Resistance of tele-service workers : implications for qualitative policy research
远程服务人员的抵制:对定性政策研究的影响
- DOI:
10.14288/1.0089443 - 发表时间:
2000 - 期刊:
- 影响因子:5.5
- 作者:
Sarah Koch - 通讯作者:
Sarah Koch
Sarah Koch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Koch', 18)}}的其他基金
Exploring the Topology and Geometry of Dynamical Subvarieties
探索动力学子类型的拓扑和几何
- 批准号:
2104649 - 财政年份:2021
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Dynamical Developments: A Conference in Complex Dynamics and Teichmuller Theory
动力学发展:复杂动力学和泰希米勒理论会议
- 批准号:
1500750 - 财政年份:2015
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
相似海外基金
Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
- 批准号:
2154019 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2021
- 资助金额:
$ 44.69万 - 项目类别:
Discovery Grants Program - Individual
Fusion of algebra, geometry and combinatorics based on the roots of Poincare polynomials of hyperplane arrangements
基于超平面排列庞加莱多项式根的代数、几何和组合数学的融合
- 批准号:
20K20880 - 财政年份:2020
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Conic Stability in the Geometry of Polynomials
多项式几何中的圆锥稳定性
- 批准号:
438633658 - 财政年份:2020
- 资助金额:
$ 44.69万 - 项目类别:
Research Grants
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2020
- 资助金额:
$ 44.69万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Geometry of Polynomials and Algorithm Design
AF:小:多项式几何与算法设计
- 批准号:
1812919 - 财政年份:2018
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
CAREER: The Geometry of Polynomials in Algorithms and Combinatorics
职业:算法和组合学中多项式的几何
- 批准号:
1553751 - 财政年份:2016
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant