EAGER: The Identification of Social Systems Trust: Theory and Experimental Validation
EAGER:社会系统信任的识别:理论与实验验证
基本信息
- 批准号:1553746
- 负责人:
- 金额:$ 19.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The effect of social network contacts is generally believed to be much stronger than either advertising or online reputation/rating systems. There are many theoretical models that try to predict how opinions spread among individuals that trust each other, but the experimental evidence to back them quantitatively in a real setting is still elusive. This project aims to close the gap between the theory of opinion diffusion and the several empirical studies that have been made recently on social media data. The novel idea is to exploit the presence of influential nodes that are ?stubborn?, i.e. agents who trust only themselves, to determine how opinions fluctuate in the network as a result of their activities and the relative trust among all agents in the social network. The mathematical insights from the theoretical models of opinion diffusion indicate that stubborn agents excite the social system in such a way that reverberations of their opinions in comments from others can allow one to fit appropriate system equations to this phenomenon. Another key insight is that using steady state models is a more robust method to match real data, since the fluctuations of opinions are not directly observable, only the individual actions and comments are. This effort, if successful, would be akin to realizing a ?social network Radar,? capturing a tomographic image of the hidden medium of a social group mutual trust. Preliminary results in the case of the celebrated linear De Groot's opinion diffusion model applied to Facebook data show remarkably good agreement between the graph one can extract from our method and first-hand knowledge of the group analyzed. This is a high risk high payoff project as several questions still need to be answered and tested to verify the results.
人们普遍认为社交网络联系的影响比广告或在线声誉/评级系统要强得多。有许多理论模型试图预测意见如何在相互信任的个人之间传播,但在真实环境中定量支持这些模型的实验证据仍然难以捉摸。该项目旨在缩小舆论传播理论与最近对社交媒体数据进行的多项实证研究之间的差距。这个新颖的想法是利用“顽固”有影响力的节点(即只信任自己的代理)的存在,来确定网络中的观点如何因其活动以及社交网络中所有代理之间的相对信任而波动。来自意见传播理论模型的数学见解表明,顽固的代理人以这样一种方式激发社会系统,即他们的意见在其他人的评论中产生反响,可以让人们将适当的系统方程拟合到这一现象。另一个关键见解是,使用稳态模型是匹配真实数据的更稳健的方法,因为意见的波动无法直接观察到,只能观察到个人的行为和评论。这项努力如果成功,将类似于实现“社交网络雷达”。捕捉社会群体相互信任的隐藏媒介的断层扫描图像。将著名的线性 De Groot 观点扩散模型应用于 Facebook 数据的初步结果表明,从我们的方法中提取的图表与所分析群体的第一手知识之间具有非常好的一致性。这是一个高风险高回报的项目,因为仍有几个问题需要回答和测试以验证结果。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SUCAG: Stochastic Unbiased Curvature-aided Gradient Method for Distributed Optimization
- DOI:10.1109/cdc.2018.8619336
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Hoi-To Wai;N. Freris;A. Nedić;A. Scaglione
- 通讯作者:Hoi-To Wai;N. Freris;A. Nedić;A. Scaglione
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Scaglione其他文献
Stochastic Dynamic Network Utility Maximization with Application to Disaster Response
随机动态网络效用最大化及其在灾难响应中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione;Nurullah Karakoç - 通讯作者:
Nurullah Karakoç
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
Network-Constrained Reinforcement Learning for Optimal EV Charging Control
用于最佳电动汽车充电控制的网络约束强化学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tong Wu;Anna Scaglione;Adrian;Daniel Arnold;S. Peisert - 通讯作者:
S. Peisert
Routing and data compression in sensor networks: stochastic models for sensor data that guarantee scalability
- DOI:
10.1109/isit.2003.1228188 - 发表时间:
2003-09 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Statistical analysis of the capacity of MIMO frequency selective Rayleigh fading channels with arbitrary number of inputs and outputs
- DOI:
10.1109/isit.2002.1023550 - 发表时间:
2002-06 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Anna Scaglione的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Scaglione', 18)}}的其他基金
I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
- 批准号:
2344120 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Travel Grant: Urban Tech Academy meeting on electrified multimodal transportation
旅行补助金:城市技术学院关于电气化多式联运的会议
- 批准号:
2336001 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
- 批准号:
2210012 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Renewables: A function space theory for continuous-time flexibility scheduling in electricity markets
合作研究:EAGER:可再生能源:电力市场连续时间灵活性调度的函数空间理论
- 批准号:
1549923 - 财政年份:2015
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1534957 - 财政年份:2014
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1531050 - 财政年份:2014
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1320065 - 财政年份:2013
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1011811 - 财政年份:2010
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Unlocking Capacity for Wireless Access Networks through Robust Cooperative Cross-Layer Design
NetS:媒介:协作研究:通过稳健的协作跨层设计释放无线接入网络的容量
- 批准号:
0905267 - 财政年份:2009
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 19.98万 - 项目类别:
Identification of circadian rhythm components and lifestyle related to improvement in the elderly with social frailty
识别与改善社交脆弱老年人相关的昼夜节律成分和生活方式
- 批准号:
23K12632 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel social media approach to #identification and #screening for hazardous drinking among diverse non-college young adults
一种新颖的社交媒体方法
- 批准号:
10526739 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Identification of the mechanisms from social determinants of health to cardiovascular events mediated through diabetes.
确定从健康的社会决定因素到糖尿病介导的心血管事件的机制。
- 批准号:
22K17392 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of post-synaptic proteins involved in a social behavioural response to the environment.
识别参与对环境的社会行为反应的突触后蛋白。
- 批准号:
547927-2020 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A novel social media approach to #identification and #screening for hazardous drinking among diverse non-college young adults
一种新颖的社交媒体方法
- 批准号:
10685492 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Evaluating a school-based social and material needs identification system to prevent youth violence involvement
评估以学校为基础的社会和物质需求识别系统,以防止青少年参与暴力
- 批准号:
10584280 - 财政年份:2022
- 资助金额:
$ 19.98万 - 项目类别:
Analysing group testing algorithms for COVID-19 surveillance and case identification in UK schools, universities, and health and social care settings
分析英国学校、大学以及卫生和社会护理机构中用于 COVID-19 监测和病例识别的群体测试算法
- 批准号:
EP/W000032/1 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
Research Grant
COLLABORATIVE RESEARCH: Social Influence in Eyewitness Identification Procedures: Do Blind Administrator Behaviors Magnify the Effects of Suspect Bias?
合作研究:目击者识别程序中的社会影响:盲目的管理员行为是否会放大嫌疑人偏见的影响?
- 批准号:
2043230 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
Identification of post-synaptic proteins involved in a social behavioural response to the environment.
识别参与对环境的社会行为反应的突触后蛋白。
- 批准号:
547927-2020 - 财政年份:2021
- 资助金额:
$ 19.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




