CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
基本信息
- 批准号:1534957
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will close technical gaps to enable cognitive radio receivers to explore the radio frequency spectrum online, using the most advanced form of Analog to Digital conversion, referred to as Finite Rate of Innovation (FRI) sampling coupled with the most advanced learning techniques. We plan to use the well-established framework of the multi-armed bandit (MAB) problem, which models the situation of a cognitive radio agent that simultaneously attempts to acquire new knowledge and to optimize its decisions based on what it has previously learned. Our main contribution lies in combining this framework with this novel Analog to Digital receiver front-end, sampling rate below the so called Nyquist limit, adaptively tuning parameters in the sampling structure to sense spectrum opportunities over a much wider range of frequencies than was previously considered possible, and specifically further below what is attainable myopically, without adaptation. The outcome of our study is a cohesive system model for a cognitive sensors, endowed with a decision engine that can optimize not only what to sample but also how to sample analog signals, leveraging on its expected success in finding spectrum holes. The project will explore the complexity of the overall architecture and, ultimately, evaluate the potential benefits of a cognitive MAB-FRI receiver. By moving learning algorithms a step closer to manage directly the data-acquisition interface to the physical world, the research as broad implications in a variety of related sensing problems. The project will also include activities to engage students in classrooms presenting the basic mathematical tools used in this research and minorities in research projects that contribute to advance the broad field of adaptive systems.
该项目将缩小技术差距,以使认知无线电接收器在线探索射频频谱,使用最先进的模拟形式到数字转换,被称为有限的创新率(FRI)采样,再加上最先进的学习技术。我们计划使用多军强盗(MAB)问题的框架框架,该框架对认知无线电代理的状况进行了建模,该框架同时尝试根据以前学到的知识来获取新知识并优化其决策。我们的主要贡献在于将该框架与数字接收器前端的新型类似物相结合,低于所谓的奈奎斯特极限的采样率,在采样结构中适应性调谐参数,以在频率范围内的频率范围较大的频率范围比以前可能的频率范围较大,具体是在不可能的情况下,没有适应性的近视,而没有适应性。 我们研究的结果是一个具有凝聚力的系统模型,用于认知传感器,并具有决策引擎,该决策引擎不仅可以优化采样的内容,还可以如何采样模拟信号,利用其在寻找光谱孔中的预期成功。该项目将探讨整体体系结构的复杂性,并最终评估认知MAB-FRI接收器的潜在好处。通过将学习算法移动到更近的一步,直接管理与物理世界的数据收购接口,这是对各种相关感应问题的广泛含义。该项目还将包括吸引学生参与教室的活动,展示本研究中使用的基本数学工具以及少数群体在研究项目中的少数群体,这些工具有助于推动自适应系统的广泛领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Scaglione其他文献
Stochastic Dynamic Network Utility Maximization with Application to Disaster Response
随机动态网络效用最大化及其在灾难响应中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione;Nurullah Karakoç - 通讯作者:
Nurullah Karakoç
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
Network-Constrained Reinforcement Learning for Optimal EV Charging Control
用于最佳电动汽车充电控制的网络约束强化学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tong Wu;Anna Scaglione;Adrian;Daniel Arnold;S. Peisert - 通讯作者:
S. Peisert
Routing and data compression in sensor networks: stochastic models for sensor data that guarantee scalability
- DOI:
10.1109/isit.2003.1228188 - 发表时间:
2003-09 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Statistical analysis of the capacity of MIMO frequency selective Rayleigh fading channels with arbitrary number of inputs and outputs
- DOI:
10.1109/isit.2002.1023550 - 发表时间:
2002-06 - 期刊:
- 影响因子:0
- 作者:
Anna Scaglione - 通讯作者:
Anna Scaglione
Anna Scaglione的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Scaglione', 18)}}的其他基金
I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
- 批准号:
2344120 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Travel Grant: Urban Tech Academy meeting on electrified multimodal transportation
旅行补助金:城市技术学院关于电气化多式联运的会议
- 批准号:
2336001 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
- 批准号:
2210012 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
EAGER: The Identification of Social Systems Trust: Theory and Experimental Validation
EAGER:社会系统信任的识别:理论与实验验证
- 批准号:
1553746 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Renewables: A function space theory for continuous-time flexibility scheduling in electricity markets
合作研究:EAGER:可再生能源:电力市场连续时间灵活性调度的函数空间理论
- 批准号:
1549923 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1531050 - 财政年份:2014
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
- 批准号:
1320065 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
- 批准号:
1011811 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Unlocking Capacity for Wireless Access Networks through Robust Cooperative Cross-Layer Design
NetS:媒介:协作研究:通过稳健的协作跨层设计释放无线接入网络的容量
- 批准号:
0905267 - 财政年份:2009
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
相似国自然基金
靶向LC3与FUNDC1互作的小分子化合物及在线虫中的抗衰老机制研究
- 批准号:32200555
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
靶向LC3与FUNDC1互作的小分子化合物及在线虫中的抗衰老机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合光学和视觉原理的小模数粉末冶金齿轮高精度快速在线检测的理论及技术研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
融合光学和视觉原理的小模数粉末冶金齿轮高精度快速在线检测的理论及技术研究
- 批准号:52175036
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
针对小分子污染物的在线分析方法及其应用研究
- 批准号:U21A20290
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
- 批准号:
10759887 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
HealthyU-Latinx: A Technology-based Tool for addressing Health Literacy in Latinx Secondary Students and their Families
HealthyU-Latinx:一种基于技术的工具,用于提高拉丁裔中学生及其家庭的健康素养
- 批准号:
10699830 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: