CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks

CIF:大型:协作研究:认知网络上的合作与学习

基本信息

  • 批准号:
    1531050
  • 负责人:
  • 金额:
    $ 11.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Cooperation and Learning over Cognitive NetworksStudies on herding and self-organization in economics and the social and biological sciences have observed that coordination among multiple agents leads to regular patterns of behavior and swarm intelligence, even when each group member shows limited behavioral complexity. In ant colonies, for example, individual ants cannot capture rich spatial information from their environment because of their limited sensing ability. Nevertheless, when the ants coordinate their activities within a colony, the group ends up exhibiting better sensing abilities. Using signal processing and communications techniques, the research studies how and why such manifestations of rational and organized behavior arise at the group level from local interactions among agents with limited abilities, what communication topologies enable such behavior, and what type of signal processing enables such formations. This research seeks to understand and reverse-engineer the distributed intelligence encountered in socio-economic-biological networks, by investigating relations with learning and rationality over cognitive networks. The latter are adaptive networks that avoid centralized information processing and perform in-network inference and control decisions. Cognitive networks contrast with networks that rely on centralized and parallel information fusion, which are not scalable, are hard to adapt to changing topologies, and suffer from points of vulnerability and information bottlenecks. The research considers large scale networks of agents and studies how global (rational or irrational) patterns of behavior emerge, including herds, contagions and bubbles in economics. An understanding of how the biotic environment influences collective behavior in animal societies provides a real world guide to good cognitive networks, which can be used in turn to design engineered systems. Cognitive networks have applications in areas ranging from precision agriculture, to environmental monitoring, disaster relief management, and smart spaces.
关于经济学的放牧和自我组织以及社会和生物科学的认知网络的合作与学习已经观察到,即使每个组成员都表现出有限的行为复杂性,多种代理之间的协调会导致行为和群体智能的定期模式。例如,在蚂蚁殖民地中,由于其感应能力有限,单个蚂蚁无法从其环境中捕获丰富的空间信息。然而,当蚂蚁在殖民地中协调其活动时,该小组最终表现出更好的感知能力。使用信号处理和通信技术,研究研究了在小组级别上如何以及为什么从能力有限的代理之间的局部互动中出现这种理性和有组织行为的表现,哪些通信拓扑可以使这种行为以及哪种类型的信号处理启用这种形式。 这项研究旨在通过研究与认知网络的学习和理性的关系来理解和反向工程。后者是自适应网络,避免集中信息处理并执行网络内推理和控制决策。认知网络与依赖不可扩展的集中信息和并行信息融合的网络形成鲜明对比,难以适应不断变化的拓扑结构,并且遭受了脆弱性和信息瓶颈的要点。 该研究考虑了代理的大规模网络,并研究了行为的全球(理性或非理性)模式如何出现,包括经济学中的牛群,传染和泡沫。对生物环境如何影响动物社会中的集体行为的理解为良好的认知网络提供了现实世界指南,该指南可用于设计工程系统。认知网络在从精准农业到环境监测,救灾管理和智能空间的领域中具有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Scaglione其他文献

Stochastic Dynamic Network Utility Maximization with Application to Disaster Response
随机动态网络效用最大化及其在灾难响应中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Scaglione;Nurullah Karakoç
  • 通讯作者:
    Nurullah Karakoç
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo
  • 通讯作者:
    Albert Rizzo
Network-Constrained Reinforcement Learning for Optimal EV Charging Control
用于最佳电动汽车充电控制的网络约束强化学习
Routing and data compression in sensor networks: stochastic models for sensor data that guarantee scalability

Anna Scaglione的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Scaglione', 18)}}的其他基金

I-Corps: Geospatial Trend Detection for Hydro-power and Critical Infrastructure Design
I-Corps:水电和关键基础设施设计的地理空间趋势检测
  • 批准号:
    2344120
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Travel Grant: Urban Tech Academy meeting on electrified multimodal transportation
旅行补助金:城市技术学院关于电气化多式联运的会议
  • 批准号:
    2336001
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
  • 批准号:
    2210012
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
EAGER: The Identification of Social Systems Trust: Theory and Experimental Validation
EAGER:社会系统信任的识别:理论与实验验证
  • 批准号:
    1553746
  • 财政年份:
    2015
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Renewables: A function space theory for continuous-time flexibility scheduling in electricity markets
合作研究:EAGER:可再生能源:电力市场连续时间灵活性调度的函数空间理论
  • 批准号:
    1549923
  • 财政年份:
    2015
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
  • 批准号:
    1534957
  • 财政年份:
    2014
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CCF: Small: Online Learning and Exploitation of the Radio Frequency Spectrum with Sub-Nyquist Sampling
CCF:小型:采用亚奈奎斯特采样的射频频谱在线学习和利用
  • 批准号:
    1320065
  • 财政年份:
    2013
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CIF: Large: Collaborative Research: Cooperation and Learning Over Cognitive Networks
CIF:大型:协作研究:认知网络上的合作与学习
  • 批准号:
    1011811
  • 财政年份:
    2010
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Unlocking Capacity for Wireless Access Networks through Robust Cooperative Cross-Layer Design
NetS:媒介:协作研究:通过稳健的协作跨层设计释放无线接入网络的容量
  • 批准号:
    0905267
  • 财政年份:
    2009
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
  • 批准号:
    52308231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
  • 批准号:
    62301293
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
  • 批准号:
    22379116
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
  • 批准号:
    2316421
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
  • 批准号:
    2316420
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
  • 批准号:
    2131115
  • 财政年份:
    2021
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了