CAREER: Extreme Toughening of HCP Metallic Alloys via Nanospaced Stacking Faults
职业:通过纳米层错实现 HCP 金属合金的极度增韧
基本信息
- 批准号:1554632
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnesium, titanium and cobalt are included in a particular class of metals with hexagonal structure at the microscopic level. A barrier to their widespread application has been the inability, based on the hexagonal structure, to design materials that have both high strength and high formability; these more often than not are mutually exclusive. The basic research supported in this Faculty Early Career Development (CAREER) award will discover and unravel the underlying mechanisms responsible for the formation of novel toughening features within the hexagonal structure, and enable processing methods to realize strategic metallic materials with unprecedented strength and formability. By engineering metallic alloys that are stronger and tougher, the lightweighting strategies critical for developing vehicles and transportation systems that reduce our dependency on fossil fuels and decrease pollution can be realized. More so, the knowledge can be extended to make advancements in other industries, such as aerospace and healthcare, thus promoting further technological advancement and economic growth. This research will be inherently multidisciplinary in nature and provide research and education opportunities for the many students from underrepresented groups at University of California Riverside.While planar boundaries such as nanotwins have shown the ability to concurrently strengthen and retain ductility in nanocrystalline metals with body center cubic and face center cubic crystal structures, they have not proven feasible in hexagonal close-packed materials based on the difficulty in twinning as the grain size decreases. Literature clues and preliminary observations by the PI have shown that nano-spaced stacking faults may afford synergistic strengthening and ductility for hexagonal close-packed materials, but there are no experimental studies that systematically investigate the intrinsic ability for these materials to form such features, nor the factors that lead to their formation, spacing and density. Thus, the objective of the research supported by this award is to explore and unravel the effects of grain size, texture, stacking fault energies and deformation conditions on the fault nucleation and growth kinetics that govern size, spacing and density. Next, the magnitude and mechanisms of mechanical property improvements achievable will be investigated. Lastly, new theoretical constructs will be developed to explain the formation, strengthening and ductility observed in these novel materials.
镁、钛和钴被包括在具有微观水平的六方结构的特定类别的金属中。 它们广泛应用的障碍是无法基于六边形结构设计出同时具有高强度和高成形性的材料;这些通常是相互排斥的。 该学院早期职业发展(CAREER)奖支持的基础研究将发现并揭示六方结构中形成新型增韧特征的潜在机制,并使加工方法能够实现具有前所未有的强度和可成形性的战略金属材料。 通过设计更坚固、更坚韧的金属合金,可以实现对于开发车辆和运输系统至关重要的轻量化战略,以减少我们对化石燃料的依赖并减少污染。更重要的是,知识可以扩展到其他行业,如航空航天和医疗保健,从而促进进一步的技术进步和经济增长。这项研究本质上将是多学科的,并为来自加州滨江大学代表性不足的群体的许多学生提供研究和教育机会。虽然平面边界如纳米孪晶已经显示出在具有体心立方和面心立方晶体结构的纳米晶金属中同时加强和保持延展性的能力,但它们在六方密堆积材料中并不可行,因为当晶粒尺寸减小时,孪晶很难形成。文献线索和PI的初步观察表明,纳米间距的堆垛层错可以为六方密堆积材料提供协同增强和延展性,但没有实验研究系统地研究这些材料形成这种特征的内在能力,也没有导致其形成,间距和密度的因素。 因此,该奖项支持的研究目标是探索和揭示晶粒尺寸,纹理,堆垛层错能量和变形条件对控制尺寸,间距和密度的断层成核和生长动力学的影响。 接下来,将研究可实现的机械性能改进的幅度和机制。 最后,将开发新的理论结构来解释在这些新材料中观察到的形成、强化和延展性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suveen Mathaudhu其他文献
Strain and strain rate in friction extrusion
- DOI:
10.1016/j.jmrt.2022.07.116 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Xiao Li;Md Reza-E-Rabby;Anthony Guzman;Glenn Grant;Suveen Mathaudhu;Micah Hinton;Anthony Reynolds - 通讯作者:
Anthony Reynolds
Nanotwin assisted reversible formation of low angle grain boundary upon reciprocating shear load
纳米孪晶辅助可逆形成低角度晶界在往复剪切载荷下
- DOI:
10.1016/j.actamat.2022.117850 - 发表时间:
2022-05-15 - 期刊:
- 影响因子:9.300
- 作者:
Shuang Li;Nanjun Chen;Aashish Rohatgi;Yulan Li;Cynthia A. Powell;Suveen Mathaudhu;Arun Devaraj;Shenyang Hu;Chongmin Wang - 通讯作者:
Chongmin Wang
Grain Size Effects and Mechanisms for Increased Antimicrobial Efficiency in Nanocrystalline Bulk Copper
纳米晶块状铜的晶粒尺寸效应和提高抗菌效率的机制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Evander Ramos;Isabella Bagdasarian;Yaqiong Li;Masuda Takahiro;Yoichi Takizawa;P. Alexander Greaney;Zenji Horita;Joshua Morgan;Suveen Mathaudhu - 通讯作者:
Suveen Mathaudhu
Suveen Mathaudhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suveen Mathaudhu', 18)}}的其他基金
Conference: 2023 Physical Metallurgy Gordon Research Conference and Seminar
会议:2023物理冶金戈登研究会议暨研讨会
- 批准号:
2326798 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Investigation of Fatigue Crack Growth Mechanisms in Microstructurally-Stable Nanocrystalline Alloys
合作研究:微观结构稳定的纳米晶合金疲劳裂纹扩展机制的基础研究
- 批准号:
1663522 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: A Theoretical and Experimental Study of Mechanical Properties in Ultrafine-Grained Alloys
合作研究:超细晶合金力学性能的理论与实验研究
- 批准号:
1463679 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
- 批准号:
2322117 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
The demographic consequences of extreme weather events in Australia
澳大利亚极端天气事件对人口的影响
- 批准号:
DP240102733 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Attributable impacts from extreme weather events
极端天气事件的影响
- 批准号:
NE/Z000203/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
- 批准号:
EP/X031624/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Resilience Against Extreme Weather Events
REU 网站:本科生抵御极端天气事件的研究经验
- 批准号:
2349250 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
- 批准号:
2319044 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




