Collaborative Research: Sparse spectral-tau methods for binary neutron star initial data

合作研究:双中子星初始数据的稀疏谱tau方法

基本信息

  • 批准号:
    1555033
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Binary neutron star inspiral is the most certain source of gravitational waves detectable by Earth-based observatories like the US LIGO project, and simulations of such binaries should facilitate eventual detections. These simulations require initial conditions: solutions to the initial value problem of general relativity for the coupled gravity-matter system. The conformal thin sandwich method is an excellent approach for solving the initial value problem; however, although not an intrinsic assumption of the method, in practice the approach has assumed conformal flatness (as have other valuable approaches). Conformal flatness yields unphysical junk radiation. By numerically constructing helically symmetric solutions to the Einstein equations, the PI will extract initial data (or conformal thin sandwich trial data) which does not rely on conformal flatness, and therefore contains the correct initial gravitational wave content. The mixed PDEs arising from the helical reduction of the Einstein equations (or their approximation in the post-Minkowski formalism) will be solved with innovative techniques: sparse modal spectral-tau methods with new preconditioning strategies. In part, these strategies may rely on randomized algorithms for the interpolative decomposition. Spectral methods deliver superb accuracy for smooth problems(neutron star spacetimes are smooth almost everywhere), and sparsity affords a fast matrix-vector multiply when using a Krylov-subspace method to iteratively solve a linear system. Whereas the preconditioning of nodal (collocation) spectral methods is well studied, less is known about modal preconditioning. Our techniques have been successfully applied to models of the binary neutron star problem. Moreover, the problem's physical structure has already been explored with different, but limited, techniques. This project is to combine two sets of techniques (each already developed) and further develop the first set (spectral-tau methods), in order to obtain new results for a leading problem in gravitational wave physics. The PI will develop these mathematical methods by applying them to the specific neutron star problem described above. This strategy of specificity is often used in the development of techniques, which then prove to be more general. Because the scientific problem is of great interest, much is known about it, and results therefore exist withwhich comparisons can be made. These comparisons facilitate the development of mathematical algorithms. Conversely, new mathematical methods deliver more and/or better solutions which enhances scientific understanding.
双星中子星INSPILL是美国LIGO计划等地面天文台可以探测到的最确定的引力波来源,对这种双星的模拟应该有助于最终的探测。这些模拟需要初始条件:重力-物质耦合系统广义相对论初值问题的解。共形薄夹层方法是解决初值问题的一种很好的方法;然而,尽管该方法不是该方法的内在假设,但在实践中该方法假定共形平坦性(与其他有价值的方法一样)。保形平坦会产生非物理的垃圾辐射。通过数值构造爱因斯坦方程的螺旋对称解,PI将提取不依赖于共形平坦度的初始数据(或共形薄层试验数据),从而包含正确的初始引力波内容。由于爱因斯坦方程螺旋化而产生的混合偏微分方程组(或它们在后Minkowski形式中的近似)将用创新的技术来求解:稀疏模态谱-tau方法和新的预条件策略。在某种程度上,这些策略可能依赖于内插分解的随机化算法。谱方法为平滑问题提供了极高的精度(中子星时空几乎在任何地方都是平滑的),当使用Krylov子空间方法迭代求解线性系统时,稀疏性提供了快速的矩阵-矢量乘法。虽然节点(配置)谱方法的预条件得到了很好的研究,但对模式预条件的了解较少。我们的技术已经成功地应用于双星中子星问题的模型。此外,已经用不同但有限的技术探索了这个问题的物理结构。这个项目将结合两套技术(每一套都已经开发出来),并进一步发展第一套技术(频谱-tau方法),以便为引力波物理中的一个领先问题获得新的结果。PI将通过将这些数学方法应用于上述特定的中子星问题来发展这些数学方法。这种特定的策略经常被用在技术的开发中,然后被证明是更通用的。因为这个科学问题非常有趣,人们对它有很多了解,因此也存在可以进行比较的结果。这些比较有助于数学算法的开发。相反,新的数学方法提供了更多和/或更好的解决方案,从而加强了科学理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Price其他文献

The relationships between land management practices and soil condition and the quality of ecosystem services delivered from agricultural land in Australia
土地管理实践与土壤状况以及澳大利亚农业用地提供的生态系统服务质量之间的关系
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Cork;Laura Eadie;P. Mele;Richard Price;D. Yule
  • 通讯作者:
    D. Yule
Assessment of neuroAIDS in Africa.
非洲神经艾滋病评估。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    K. Robertson;K. Kopnisky;Jens Mielke;K. Appiah;C. Hall;Richard Price;J. Kumwenda;Cecelia Kanyama;F. Amod;C. Marra;Terrie Taylor;U. Lalloo;J. Jelsma;P. Holding;M. Boivin;G. Birbeck;N. Nakasujja;I. Sanne;T. Parsons;A. Parente;K. Tucker
  • 通讯作者:
    K. Tucker
Historiography, Narrative, and the Nineteenth Century
  • DOI:
    10.1086/386105
  • 发表时间:
    1996-04
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Richard Price
  • 通讯作者:
    Richard Price
P54. Non-melanoma skin cancer incomplete excision rates of different grades of plastic surgeons and the implications for service provision
  • DOI:
    10.1016/j.ejso.2012.07.175
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kai Yuen Wong;Onur Gilleard;Richard Price
  • 通讯作者:
    Richard Price
Meditação em torno dos usos da narrativa na antropologia contemporânea
当代人类学叙事的思考
  • DOI:
    10.1590/s0104-71832004000100013
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Price
  • 通讯作者:
    Richard Price

Richard Price的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Price', 18)}}的其他基金

Improving the radical cure of vivax malaria: A multicentre randomised comparison of short and long course primaquine regimens
改善间日疟疾的根治:短期和长期伯氨喹治疗方案的多中心随机比较
  • 批准号:
    MR/K007424/1
  • 财政年份:
    2013
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Research Grant
Collaborative Research: Sparse spectral-tau methods for binary neutron star initial data
合作研究:双中子星初始数据的稀疏谱tau方法
  • 批准号:
    1217053
  • 财政年份:
    2012
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Black Holes and Gravitational Waves
黑洞和引力波
  • 批准号:
    0554367
  • 财政年份:
    2006
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Processes of Culture Change in a Creole Society
克里奥尔社会的文化变迁过程
  • 批准号:
    0450170
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Quantum Gravity and Relativistic Astrophysics
量子引力和相对论天体物理学
  • 批准号:
    0514282
  • 财政年份:
    2004
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Quantum Gravity and Relativistic Astrophysics
量子引力和相对论天体物理学
  • 批准号:
    0244605
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Quantum Gravity and Relativistic Astrophysics
量子引力和相对论天体物理学
  • 批准号:
    9734871
  • 财政年份:
    1998
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Historical Anthropology of an Early Afro-American Society
早期非裔美国社会的历史人类学
  • 批准号:
    7602848
  • 财政年份:
    1976
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312863
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2217028
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2217086
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了