I-Corps: High-fidelity Simulation Software for Microfluidics

I-Corps:微流控高保真仿真软件

基本信息

项目摘要

Microfluidic systems are increasingly being used in diagnostics and therapeutics of several human diseases. They hold tremendous promise for low-cost, point-of-care diagnosis of various types of cancer and HIV, for instance. Key to the success of such systems is the ability to precisely control and manipulate individual blood cells. While their design so far is largely based on heuristics and exhaustive lab testing, new predictive computer simulation tools are emerging. Current commercial software packages provide excellent simulation tools to analyze flow of simple (Newtonian) fluids through any given microfluidic device. However, in the case of flows involving deformable particles such as cells, bubbles or capsules, their scope is extremely limited. Based on recent advances in numerical algorithms, this project will develop novel simulation technology capable of simulating realistic blood cell concentrations, enabling rapid prototyping of microfluidic devices. Thereby, this project has the potential to drive further innovations in low-cost diagnostic tools and patient-specific therapeutic strategies. The main difficulty with particulate flow simulations lies in the fact that the hydrodynamic interactions are long-range, thereby, leading to high computational expense. Furthermore, the time-stepping schemes suffer from loss of accuracy and stability due to nearly touching surfaces that vary in time as the particles flow. The solvers developed by this I-Corps team are already capable of (i) computing the interactions between cells and channels in linear time via the use of fast N-body algorithms, (ii) delivering results with high-fidelity via the use of spectrally-accurate numerical methods and (iii) performing long-time simulations via the use of stiffness-overcoming time-marching schemes. The primary goal of this project is to build a simulation suite that works for any given chip geometry, boundary conditions and cellular concentrations.
微流控系统越来越多地用于几种人类疾病的诊断和治疗。例如,它们为各种癌症和艾滋病的低成本即时诊断带来了巨大的希望。这种系统成功的关键是精确控制和操纵单个血细胞的能力。虽然到目前为止,它们的设计主要是基于启发式和详尽的实验室测试,但新的预测性计算机模拟工具正在出现。目前的商业软件包提供了优秀的模拟工具来分析简单(牛顿)流体通过任何给定的微流体装置的流动。然而,在涉及可变形颗粒(如细胞、气泡或胶囊)的流动情况下,它们的范围非常有限。基于数值算法的最新进展,该项目将开发能够模拟真实血细胞浓度的新型模拟技术,从而实现微流体装置的快速原型设计。因此,该项目有可能推动低成本诊断工具和患者特异性治疗策略的进一步创新。颗粒流模拟的主要困难在于流体动力相互作用是远距离的,从而导致较高的计算费用。此外,由于几乎接触的表面随着粒子流动而随时间变化,时间步进方案遭受精度和稳定性的损失。这个i - corps团队开发的求解器已经能够(i)通过使用快速n体算法在线性时间内计算细胞和通道之间的相互作用,(ii)通过使用光谱精确的数值方法提供高保真度的结果,(iii)通过使用克服刚度的时间推进方案进行长时间模拟。该项目的主要目标是建立一个适用于任何给定芯片几何形状、边界条件和细胞浓度的模拟套件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shravan Veerapaneni其他文献

Toward Neural Network Simulation of Variational Quantum Algorithms
变分量子算法的神经网络模拟

Shravan Veerapaneni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shravan Veerapaneni', 18)}}的其他基金

Computational Retinal Hemodynamics
计算视网膜血流动力学
  • 批准号:
    2012424
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
  • 批准号:
    2038030
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
  • 批准号:
    1719834
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Fast Algorithms for Particulate Flows
职业:颗粒流的快速算法
  • 批准号:
    1454010
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Fast high-order methods for electrohydrodynamics of vesicle suspensions
囊泡悬浮液电流体动力学的快速高阶方法
  • 批准号:
    1418964
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Mathematical and experimental study of lipid bilayer shape and dynamics mediated by surfactants and proteins
合作提案:表面活性剂和蛋白质介导的脂质双层形状和动力学的数学和实验研究
  • 批准号:
    1224656
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Fidelity Climate Simulation Powered by Generative Adversarial Networks
SBIR 第一阶段:由生成对抗网络提供支持的高保真气候模拟
  • 批准号:
    2335370
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fast algorithms for high fidelity simulation of viscous suspension flows
用于粘性悬浮液流高保真模拟的快速算法
  • 批准号:
    2309661
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Impact of Inlet Conditions on Interfacial Instability and Spray Formation: High-Fidelity Simulation, Characterization, and Sub-Grid Modeling
职业:入口条件对界面不稳定性和喷雾形成的影响:高保真模拟、表征和子网格建模
  • 批准号:
    2321396
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Functional Endoscopic Sinus Surgery (FESS) simulation: validating a medium-fidelity simulator for junior resident training
功能性内窥镜鼻窦手术 (FESS) 模拟:验证用于初级住院医师培训的中保真度模拟器
  • 批准号:
    466546
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship Programs
Novel Approach to Rotorcraft Simulation Fidelity Enhancement and Assessment
旋翼机仿真保真度增强和评估的新方法
  • 批准号:
    EP/P030009/2
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Development of a high-fidelity indoor airship dynamics simulation and control
高保真室内飞艇动力学仿真与控制的研制
  • 批准号:
    565300-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
High-fidelity simulation and machine learning modeling of clean biomass combustion
清洁生物质燃烧的高保真模拟和机器学习建模
  • 批准号:
    21F30351
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了