CAREER: Robust Modeling and Predictions of Stream Water Quality and Ecosystem Health
职业:溪流水质和生态系统健康的稳健建模和预测
基本信息
- 批准号:1561942
- 负责人:
- 金额:$ 47.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1454435 (Abdul-Aziz). The goal of this research is to investigate and robustly predict the dynamics of stream water quality and ecosystem health in complex urban-natural basins (e.g., coastal urban centers). The central research hypothesis is that urban stream biogeochemical and ecological processes follow emergent similitude, scale-invariant patterns and organizing principles, which will lead to spatiotemporally robust predictions of water quality and ecosystem health. Specific research objectives are to (1) identify the dominant controls and quantify relative linkages of stream water quality and ecosystem health variables in relation to the hydro-climatic, watershed and land use, in-stream, and coastal drivers/stressors; (2) investigate the similitude (parametric reductions), scaling laws (emergent patterns), and organizing principles for stream water quality and health variables; and (3) formulate informatics based empirical (i.e., data-driven) and mechanistically based behavioral models as ecological engineering tools to obtain spatiotemporally robust predictions of urban stream water quality and ecosystem health. The integrated educational objective is to develop an inductive-learning based interdisciplinary Ecological Engineering Pedagogy (EEP); in order to (1) increase retention of undergraduates and graduation of minority students in relevant STEM majors, (2) increase graduate students specializing in the emerging paradigm of ecological engineering, and (3) increase the number of K-12 students actively pursuing STEM educations/careers. The research will be primarily conducted in South Florida, a living laboratory and hot-spot for climate change and sea level rise; considering the region a prototype, case study of complex urban-natural environments around the world. The research will also utilize nationally available data for other coastal urban centers (e.g., New York, Los Angeles, Houston), incorporating hydro-climatic, biogeochemical and ecological gradients across the U.S. coasts.The research will employ a data-analytics and informatics framework to achieve mechanistic understanding on the dominant controls of urban stream water quality and ecosystem health processes. It seeks to unravel the biogeochemical-ecological similitude and scaling laws for urban streams by deriving and utilizing appropriate dimensionless functional groups, which will identify the different environmental regimes and organizing principles of water quality and ecosystem health. The scale-invariant patterns and emerging organizing principles will help to formulate parsimonious empirical and mechanistic behavioral models that, with nominal calibrations, can provide spatiotemporally robust predictions of stream water quality and health indicators. The effort will utilize inductive learning methods to develop EEP case studies, involve minority undergraduates in research, and formulate simple Excel tools for K-12 students. It will utilize inductive learning methods to develop EEP case studies, involve minority undergraduates in research, and formulate simple Excel tools for K-12 students. Research outcomes will be shared with relevant agencies (e.g., Cities, County, NGOs) to improve their stream water quality and health management strategies. The EEP case studies will be utilized to teach two new interdisciplinary courses (developed by the PI): Ecohydrological Engineering (undergraduate) and Ecological Engineering (graduate). Research and educational outcomes will be broadly disseminated through journal publications, conference presentations, graduate theses/dissertation, reports, YouTube, and a project website. Local and regional high school students and teachers will be involved with the research-education by leveraging current and developing new collaborations.
1454435(Abdul-Aziz)。这项研究的目标是调查和稳健地预测复杂的城市自然流域(例如,沿海城市中心)。 核心研究假设是城市河流生态化学和生态过程遵循涌现相似性、尺度不变模式和组织原则,这将导致时空上对水质和生态系统健康的稳健预测。 具体的研究目标是:(1)确定河流水质和生态系统健康变量与水文气候、流域和土地利用、河流内和沿海驱动因素/压力因素的主要控制因素,并量化这些变量之间的相对联系;(2)调查河流水质和生态系统健康变量与水文气候、流域和土地利用、河流内和沿海驱动因素/压力因素之间的相似性。(参数缩减),标度律(紧急模式),和组织原则的溪流水质和健康变量;和(3)制定信息学为基础的经验(即,数据驱动的)和基于机制的行为模型作为生态工程工具,以获得城市河流水质和生态系统健康的时空鲁棒预测。 综合教育目标是开发基于诱导学习的跨学科生态工程教学法(EEP);为了(1)增加本科生的保留率和相关STEM专业的少数民族学生的毕业,(2)增加专门研究新兴生态工程范式的研究生,以及(3)增加积极追求STEM教育/职业的K-12学生的数量。该研究将主要在南佛罗里达进行,这是一个活生生的实验室,也是气候变化和海平面上升的热点;考虑到该地区是世界各地复杂城市自然环境的原型和案例研究。 该研究还将利用其他沿海城市中心的全国可用数据(例如,纽约、洛杉矶、休斯顿),将美国海岸的水文气候、地球化学和生态梯度结合起来。这项研究将采用数据分析和信息学框架,以实现对城市河流水质和生态系统健康过程的主要控制机制的机械理解。 它试图通过推导和利用适当的无量纲功能组,这将确定不同的环境制度和水质和生态系统健康的组织原则,解开城市河流的生态化学-生态相似性和标度律。 尺度不变的模式和新兴的组织原则,将有助于制定简约的经验和机械行为模型,标称校准,可以提供时空强大的预测流水质和健康指标。 这项工作将利用归纳学习方法来开发EEP案例研究,让少数民族大学生参与研究,并为K-12学生制定简单的Excel工具。 它将利用归纳学习方法来开发EEP案例研究,让少数民族大学生参与研究,并为K-12学生制定简单的Excel工具。 研究成果将与相关机构分享(例如,城市,县,非政府组织),以改善其河流水质和健康管理战略。 EEP案例研究将用于教授两门新的跨学科课程(由PI开发):生态水文工程(本科)和生态工程(研究生)。 研究和教育成果将通过期刊出版物、会议报告、研究生论文/学位论文、报告、YouTube和项目网站广泛传播。 当地和地区的高中学生和教师将通过利用现有的和发展新的合作参与研究教育。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emergent Scaling of Dissolved Oxygen (DO) in Freshwater Streams Across Contiguous USA
- DOI:10.1029/2022wr032114
- 发表时间:2023-01
- 期刊:
- 影响因子:5.4
- 作者:O. Abdul‐Aziz;A. Gebreslase
- 通讯作者:O. Abdul‐Aziz;A. Gebreslase
Relative linkages of stream water quality and environmental health with the land use and hydrologic drivers in the coastal‐urban watersheds of southeast Florida
- DOI:10.1002/2017gh000058
- 发表时间:2017-06
- 期刊:
- 影响因子:4.8
- 作者:O. Abdul‐Aziz;Shakil Ahmed
- 通讯作者:O. Abdul‐Aziz;Shakil Ahmed
Linking Seasonal Changes in Organic Matter Composition and Nutrients to Shifting Hydraulic Gradients in Coastal Urban Canals
- DOI:10.1029/2022wr033334
- 发表时间:2023-01
- 期刊:
- 影响因子:5.4
- 作者:M. A. Smith;J. Kominoski;R. Price;O. Abdul‐Aziz;T. Troxler
- 通讯作者:M. A. Smith;J. Kominoski;R. Price;O. Abdul‐Aziz;T. Troxler
Evaluating the Emergent Controls of Stream Water Quality with Similitude and Dimensionless Numbers
- DOI:10.1061/(asce)he.1943-5584.0001769
- 发表时间:2019-05
- 期刊:
- 影响因子:2.4
- 作者:O. Abdul‐Aziz;Shakil Ahmed
- 通讯作者:O. Abdul‐Aziz;Shakil Ahmed
Metabolic scaling of stream dissolved oxygen across the U.S. Atlantic Coast
美国大西洋沿岸河流溶解氧的代谢规模
- DOI:10.1016/j.scitotenv.2022.153292
- 发表时间:2022
- 期刊:
- 影响因子:9.8
- 作者:Ahmed, Shakil;Abdul-Aziz, Omar I.
- 通讯作者:Abdul-Aziz, Omar I.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Abdul-Aziz其他文献
Omar Abdul-Aziz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Abdul-Aziz', 18)}}的其他基金
CRISP 2.0 Type 2: Collaborative Research: Organizing Decentralized Resilience in Critical Interdependent-infrastructure Systems and Processes (ORDER-CRISP)
CRISP 2.0 类型 2:协作研究:在关键的相互依赖的基础设施系统和流程中组织去中心化的弹性 (ORDER-CRISP)
- 批准号:
1832680 - 财政年份:2019
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Ecological Similitude and Scaling for Robust Modeling and Predictions of Ecosystem Carbon, Water and Energy Fluxes
生态系统碳、水和能量通量的稳健建模和预测的生态相似性和标度
- 批准号:
1705941 - 财政年份:2017
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
CAREER: Robust Modeling and Predictions of Stream Water Quality and Ecosystem Health
职业:溪流水质和生态系统健康的稳健建模和预测
- 批准号:
1454435 - 财政年份:2015
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Investigation of Wetland Biogeochemical Similitudes and Scaling for Robust Predictions of Greenhouse Gas Emissions and Carbon Sequestration
湿地生物地球化学相似性和温室气体排放和碳封存稳健预测的缩放研究
- 批准号:
1561941 - 财政年份:2015
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Investigation of Wetland Biogeochemical Similitudes and Scaling for Robust Predictions of Greenhouse Gas Emissions and Carbon Sequestration
湿地生物地球化学相似性和温室气体排放和碳封存稳健预测的缩放研究
- 批准号:
1336911 - 财政年份:2013
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Consistent Continuum Formulation and Robust Numerical Modeling of Non-Isothermal Phase Changing Multiphase Flows
职业:非等温相变多相流的一致连续体公式和鲁棒数值模拟
- 批准号:
2234387 - 财政年份:2023
- 资助金额:
$ 47.87万 - 项目类别:
Continuing Grant
CRII: III: Metadata-guided Imbalance-Modeling for Robust Computational Healthcare
CRII:III:元数据引导的稳健计算医疗保健不平衡建模
- 批准号:
2245920 - 财政年份:2023
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Modeling and optimization for advanced management of the complex products for the robust circular economy in Canada
对复杂产品的高级管理进行建模和优化,以促进加拿大强劲的循环经济
- 批准号:
RGPIN-2020-05565 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Discovery Grants Program - Individual
Robust and Accurate Equation of State Framework for Modeling Phase Behavior of Reservoir Fluids under Extreme Pressure/Temperature Conditions
用于模拟极压/温度条件下储层流体相行为的稳健且准确的状态方程框架
- 批准号:
RGPIN-2020-04571 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Robust and High Order Numerical Simulation for Phase Field Modeling
LEAPS-MPS:相场建模的鲁棒高阶数值模拟
- 批准号:
2213436 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10708908 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
PIPP Phase I: Robust Epidemic Surveillance and Modeling (RESUME)
PIPP 第一阶段:强大的流行病监测和建模(RESUME)
- 批准号:
2200234 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Standard Grant
Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
- 批准号:
RGPIN-2020-04138 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10503637 - 财政年份:2022
- 资助金额:
$ 47.87万 - 项目类别:
Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
- 批准号:
RGPIN-2020-04138 - 财政年份:2021
- 资助金额:
$ 47.87万 - 项目类别:
Discovery Grants Program - Individual